
AD-A131 674 RESEARCH IN NET MANAGEMENT TECHNIQUES FOR TACTICAL DATA 1I-
NETWORKS(U POLYTECHNIC INST OF NEW YORK BROOKLYN

R BOORSTYN ET AL.
SEP 82 CECOM-80-057O9-3

UNCLASSIFIED DAAKSO-80-K-OS7g F/O 17/2 NLARC lllll

EIIIEEIIIEIII
EIIIIIIEEEIII
IIIIIIIIIIIIII
IIIIEIIIIIEEI
IEIIEIIIIEIII

mE~h~hhhhhhE

I ___I

11111 11111=6

NA 1(

'Ii RESEARCH AND DEVELOPMENT TECHNICAL REPORT
CECOM-8o-579-3

Research in Net Management Techniques for

9 Tactical Data Networks

Robert Boorstyn
Aaron Kershenbaum
POLYTECHNIC INSTITUTE OF NEW YORK
333 Jay Street
Brooklyn, New York 11201

III

September 1982

Semiannual Technical Report for Period September 1, 1981 to
February 28, 1982

I=

Approved for Public Release;
Distribution Unlimited. D T IC
'rci~ared for: E E r W0- CM1TE_ FOR CO 1MNICATIONS SYSTEMS AUG 2 3

g CECOM A
LtJ

SU S ARMY COMMUNICATIONS-ELECTRONICS COMMAND
FORT MONMOUTH, NEW JERSEY 0703 C022

8308 22 0761
. ~ .-.

3 NOTICES

I' !N 0'" T CE

Disclaimers

The citation of trade names and names of maufacturs in

this report in not to be c trued as official Gover ment
indomsement or approval of ammorciel prwodta or services

referenced heroin.
'.
I

.1 Da~hm
• ! Disposition

Deroy this pat whe i is no longsw uneeded. Do not
return it to the originstor

I

I

*1

._I~

TABLE OF CONTENTS

Introduction

Research Summaries

A. Studies in Adaptive Routing
1. Stable Routing Patterns
2. Locally Adaptive Routing

B. Multiple Access Techniques with Varying Packet Lengths

References

Personnel

Papers Published and Written

Activities

Appendices

C. Throughput Analysis of Multihop Packet Radio Networks

D. Centralized Teleprocessing Network Design

E. Generalized Augmenting Paths for the Solution of Combinatorial
Optimization Problems

e.. il i4 b t I

AU1 Lan4/or

_ eO1 ..- . .

INTRODUCTION

Our research for this period is summarized in five parts below.

In part A we extend our results on adaptive routing to further connect

the two levels -- global and local. In part A.1 we present an efficient

global routing algorithm which minimizes the maximum utilization in a

link. This assures stability and generates required flows for the local

level. It's simple objective function results in a very fast implementa-

tion. In part A.2 we reconsider the local level optimization but with

output flow constraints. We show that there is a reasonable amount of

control embedded in our priority rule. We also pose the problem as a

Markov Decision Process, identify when deterministic policies are opti-

mal, and show for a simple example that a threshhold policy is optimal.

In part B we present several results which generalize the analyses

of random access in ALOHA, CSMA, and CSMA/CD to include arbitrary

packet length distributions. In part C we extend our work on Multihop

Packet Radio Networks to include non-exponential packet length distri-

butions and present more examples, especially the throughput of a "hot

spot."

In parts D and E we summarize some results. on algorithms for

Centralized Teleprocessing Network Design and on augmenting paths for

Combinatorial Optimization Problems.

RESEARCH SUMMARIES

A. Studies in Adaptive Routing

A.1. Stable Routing Patterns

As part of a general investigation in the area of dynamic routing

in computer communication networks we consider the problem of finding

stable global routing patterns. Specifically, we have proposed [1] a

two-level routing procedure where the lower (local) level adapts dy-

namically to instantaneous variations in the congestion of the network in

the immediate vicinity of each node and the higher (global) level en-

sures stability by keeping the average load across the entire network in

some sense globally balanced. We now consider this latter problem.

We consider as a measure of global balance the utilization of the

most heavily utilized network element (node or link) and seek to mini-

mize this quantity. For simplicity, we will speak only of link utiliza-

tions. (Node utilizations can be included in a straightforward manner.)

Thus, we are given a network containing N nodes and L (directed)

links. Each link, 1, has a capacity C1. There are (directed) require-

ments rij between nodes i and j. Each rij is satisfied by routing it on

one or more paths p(K?. from i to j. (In the two level adaptive routingJ

scheme, these paths (or links within them) will be the alternatives open

to each requirement.) A routing pattern is defined by the paths P(K)
1j

and the fraction, f(of r using each p(K) The utilization of each

link is equal to the total flow (sum of fractions of requirements) on the

link divided by its capacity.

The maximally utilized link is in a sense the most vulnerable part

of the network and the most likely cause for the dynamic routing mech-

anism to break down (e.g. loop) due to congestion. By minimizing the

2

utilization of the maximally utilized link we seek to minimize the chance

of congestion leading to such failure. it should be noted that we are

dealing with the global level of the routing procedure here and as such

consider only long term average utilizations, not instantaneous meas-

ures. The local level of the routing procedure concerns itself with

making decisions instantaneously on the basis of the local state of the r

network in the vicinity of a node. Even within the constraints of a

given P(K and f(K) defined by the global strategy, the local level has

considerable flexibility in choosing when to use each route and as such

can obtain substantial reductions in delay when compared with static

routing policies.

We now turn to the problem of actually finding the optimal global

routing pattern as defined above. The technique resembles the Flow

Deviation Method of Cantor and Gerla [2) and will be described in

similar terms. Cantor and Gerla sought to minimize the average delay

whereas we seek to minimize the maximum utilization of a link. Both

functions are convex functions over a convex region and as such, the

same type of procedure can be proven to yield an optimal routing

pattern. The proof is given in [2]1.

Our function is only piecewise differentiable and as such, the

gradient search used in (2] is not appropriate. In fact, the alternative

described here takes the special nature of the objective function, a

minimum of linear functions, into account and not only overcomes its

non -differentiability but also is considerably more efficient and easier

to implement than a gradient search.

We now give an outline of the optimization procedure. A high

level flowchart of this procedure is given in Figure 1. As mentioned

3

above, at this level the procedure is almost identical to the Flow De-

viation Algorithm. The key difference, which is only evident in a more

detailed description, is how the optimal superposition of flows is found.

We define the length of a link to be its utilization. Initially, we '
set all link lengths to 0. We define the length of a path to be the

length of the longest link in the path plus a small constant times the

number of links in the path. This latter term is added to break ties

among paths with equally utilized links in favor of a path with the

smallest number of links. Note that this definition of path length is

different from the conventional one but it serves our purpose. Short-

est paths using this metric are computable using conventional shortest

path algorithms.

The routing pattern found at each stage in the optimization proce-

dure is a single shortest path for each requirement r j (In general,

this path is not unique, but this poses no problem.) A flow pattern is

defined as the total flow in each link and is found by loading the

requirements onto the links specified in the current flow patterns.

An optimal superposition of the current flow pattern with all pre-

vious flow patterns is then found. This is the key step in the proce-

dure and is done by finding the value of X between 0 and 1 which

minimizes V, the maximum link utilization, where X represents the frac-

tion of all previous flow patterns used. The new optimal superposition

of flows is then X times the previous superposition plus (1-X) times the

current flow pattern. A new superposition, and hence link utilizations,

is then obtained. This in turn yields a new value for V(K) and the

link lengths. We can now start another iteration. If, however, no

improvement in V(K) has been observed, the iteration has converged

4

and we terminate the procedure with an optimal flow pattern. By

saving the routing patterns and X(K), the values of X for each K, the

optimal routing pattern can be obtained. In particular, if p(K)is the

(ij) path first used in the routing pattern in iteration K then the

fraction of commodity (ij) using P(K)is

M)

j=K+I

where M is the number of iterations and the product is defined equal to

I for K M.

We now turn to the problem of how to find the optimal super-

position of flows. Consider two flow patterns, F(1) and F(2). Each

flow pattern assigns a flow to each link. Thus f(') and f(2) are the
1j 1]

flows assigned to link (ij) in F(1) and F(2), respectively. For any X

between 0 and 1, the flow assigned to link (ij) by superposing XF(1)

and (1-A)F (2) is then

Xf()+ (1-X)f
(2)

ii 1)

which equals

f(2)+ ,(f(1). f(2))
ii ii ii

which is a linear function of X. Dividing by C1, to obtain utilizations,

there will be, in general, a different function, a1 + bIX for each link 1.

(We will for simplicity refer to links by a single index, 1, rather than

endpoints (ij).)

We seek the value of A which minimizes the maximum of these

functions over all 1. Several simple observations allow us to find this

value of X in an efficient and straightforward manner. First, if for two

5

links, I and m, a, > am and b,> bmthen link I is said to dominate link

m and link m can be ignored as it clearly does not participate in the

maximum since a1I + b IX a m + b mA for all values of A. Indeed, if a, +

bA I) a m + b mX for all X between 1) and 1 then link m may be ignored.

Note that this latter condition is not equivalent to the former, for

example if aI= 10, b1 =O0, am = 2, and bm =3

We can then arrange the links I in descending order of a1 and

examine the b1 . Any link m for which b m does not exceed 1,1, where I

is the predecessor of m in the order, can be eliminated. We now have

an ordering of links which is descending in a, and ascending in b,. We

then compute, for each adjacent pair of links 1 and m, the value Xfor

which a1 + b1X1 = am + bmX,. The X, should form an ascending se-

quence. A value of XA1 which is less than the value of its predecessor

in the sequence corresponds to a link 1 which can be eliminated from

further consideration. In this case, link I is eliminated and m has a

new predecessor. The X is then recomputed for link p the new pre-

decessor of m and this process is repeated. For link n, the last link

in the sequence, A n= 1.

We now compute for each remaining link 1 v a1 + b X1 and select

the minimum of these values. The resulting A1I and v 1 are the desired

values yielding the optimal superposition.

This entire process is illustrated in Figure 2. The links have

been sorted so that the a1I are descending. Links with rionascending b I

have already been eliminated. Thus the b 1 form an ascending sequence.

This is evident in Figure 2 by the fact that the lines form a sequence

increasing in slope. The intersection of lines 1 and 2 (i. e. the lines

starting at a 1 and a 2) defines A1 . Similarly, the intersection of lines

6

2 and 3 defines Aand A2 >A.So thus far no line is dominated. The

intersection of lines 3 and 4 takes place between X = 1 so line 4 is

dominated by line 3 and line 4 is thus eliminated from further consider-

ation. The intersection of lines 3 and 5 defines a value of "3 (dotted

line), but when X5 is computed we find it to be less than A.So, line

5 is dominated by line 6 and removed from further consideration. A3 is

then recomputed from the intersection of lines 3 and 6. X 6 is computed

from the intersection of lines 6 and 7. Finally A7~ = 1. This leaves us

with x3, x2, X31 X6 , and A7 (also A0 = 0). We search among the cor-

responding v I and f ind v 3 is minimum. It and A3 define the desired

superposition.

The entire optimization process is illustrated in Figures 3, 4, and

5. The network consisting of 3 nodes, 6 links and 6 requirements is

shown in Figure 3. For simplicity, we assume symmetric requirements

and link capacities. We can thus assume a symmetric solution, i .e.,

routes for r i the reverse of routes for r.. and equal utilization of each

link in both directions. This allows us to only consider 3 links and 3

requirements in the example. This is done to simplify the example.

The actual procedure works with directed links and requirements. It

can also be used with undirected links and requirements but such a

situation is rarely physically meaningful.

Initially, all requirements are routed directly since the initial

shortest paths by our definition would be the paths with the minimum

number of links. This is illustrated in Figure 4a. The link lengths

are then recomputed -- link 1 has a utilization of .3 and hence a length

of .3, etc. The shortest paths are then recomputed and are shown in

Figure 4b. Note that the shortest path from B to C is now B-A-C.

7

The requirements are loaded onto these paths. The flow pattern is

shown in Figure 4c.

Now a superposition of the flow patterns in Figures 4a and 4c is

done. Figure 5 illustrates the dynamics of this. Note that r AC domi-

nates r AB and that the optimal X is .9 and v = 4.5. Figure 4d shows

the resultant routing pattern formed by using the first routes for 90%

of the traffic and the second routes for the remaining 10%. Figure 4e

shows the flow pattern resulting from the superposition. Note that the

maximum utilization is .45 (in links (A,C) and (B,C)) which i -ss

than the maximum in either of the patterns in Figures 4a and 4c.

We now recompute the link lengths and the shortest paths .'he

resultant routes are the same as in Figure 4a. An optimal superp- -ion

between this flow pattern and the one in Figure 4e is then done. The

optimal value of X~ is 1, no improvement in v is found and we conclude

that the routing and flow pattern in Figures 4d and 4e are optimal.

Note that the links (A,C) and (B,C) are both maximally utilized. They

form a cut which is analogous to the saturated cut in Gerla's Cut Satu-

ration Method. (The existence of such a cut is a necessary condition

for the optimality of a flow pattern.)

We thus have developed a simple and efficient algorithm for obtain-

ing stable flow patterns for use globally as the higher level in our 2

level adaptive routing procedure. In the coming months we hope to

implement this procedure and experiment with it.

In an allied study we investigated a pattern for placing virtual

calls on a network. A simulation program was written to directly ob-

serve the dynamic performance of an algorithm which loads calls on

alternate routes according to the following algorithm:

8

1. Load each incoming call onto the route currently carrying the

smallest number of calls. (The number of calls carried by a

route is defined for the purposes of this algorithm to be the

number of calls on the first link in the route.)

2. If there is a tie among several routes in a set, S, select

route i with probability Pi(S).

The simulation was written to provide us with a first glimpse of

the dynamic performance of such a procedure as a guide for further

research in this area. We thus wanted to keep it as simple as possible

and considered a 3 node 6 link network as shown in Figure 5a with

symmetric requirements. The program can easily be expanded to con-

sider more general cases but we chose this simple one initially in order

not to obscure the basic results.

Calls arrive at each node at a rate X (Poisson) and are served at

rate p (exponential) by the links, i.e., have exponential duration with

average length 1/p. Each call has a choice of a 1 hop path or a 2 hop

path. A call arriving at a node is equally likely to be destined for

either other node. Thus, there is total symmetry in the system. It

should be noted that a call taking a 2 hop path occupies 2 links but

remains in the system for time 1/p on average (not 2/p).

The simulation is straightforward. Call arrivals are generated

randomly and arriving calls are routed accordcng to the algorithm given

above. The number of calls taking the 1-hop and 2-hop routes were

recorded for each run. A parameter, a, determined the probability of

taking the 1-hop route when there was a tie between the 2 routes (a =

Prob {using the 1-hop route in case of a tie)).

9

For u = .5 the fraction of calls taking the 1-hop route was, not

surprisingly, very close to . For a = 0, however, the fraction varied.

For /p = 1, 80% of the calls took the 2-hop path. For X/p = 10, 66% of

the calls took the 2-hop path. For A/p = 50, 65% of the calls took the

2-hop path. For a = 1, the results (fraction on 1-hop versus fraction

on 2-hop paths) reversed relative to the results for a = 0.

We thus conclude that we have some control but not total control

over the routing via a which only operates during a tie. The control

gets greater for systems with a smaller number of calls in progress, as

evidenced by the results for smaller values of A/p (which is directly

related to the number of calls in the system). Observations of the

number of calls in the system at various points in a simulation run led

to the conclusion that the system is stable, i.e., that the link loads

reach a stable level and remain close to that point and close to one

another.

10

Set initial link lengthsK -= I V ° - co

Find routing pattern I

(Shortest Path),P

Find flow pattern, F

1,1

Find maximum link
utilization, VK

V K No

< (Finished)

Yes

K= K+

Reset link lengths

FIGURE 1

OPTIMIZATION PROCEDURE

11

a1
a2

a3

V
3a

a4

a5

6

0 X2. X5Xx\

"3

FIGURE 2

FLOW SUPERPOSITION S

12

AB

CAB CAC CBC 0

r BC

FIGURE 3

NETWORK AND REQUIREMENTS a

A A A

B CBC B C
4-5- 0

FIGURE 4a FIGURE 4b FIGURE 4c
Routing Pattern 1 Routing Pattern 2 Flow Pattern 2

= Flow Pattern 2

~3 /~\4, 7/2 9/2

B __ _C B C
9/2 9/2

FIGURE 4d FIGURE 4e
Superposition Superposition

of Routing of Flows
Patterns

13

I I
10

9

8(

7

6

5 rBC

rAG

3 rAB

2

o

0 . .2 .3 .4 .5 .6 .7 .8 1.0

FIGURE 5

MAXIMUM LINK FLOW (V) VERSUS k

14

FIGURE 5a

A SYMMETRICAL NETWORK

A. .2 Locally Adaptive Routing

For routing at the local level we proposed a priority routing al-

gorithm [1]. Its function is summarized in Figure 6 whereby dedicated

traffic, i.e. those without choice, join queues Q1I and Q2in order to

obtain service on links A and B respectively. Traffic with choice join

the middle queue Q3 and is served on either A or B whenever Qor

is empty. Assuming arrival rates X 11 2 , A3 and equal service times p, the

service utilizations PA and PB are given in the Figure. The parameter

ai, denotes the fraction of the non-dedicated traffic which is served by

A. A heuristic estimate for ai is given by

T(T-~ -- P

Solving for ai we obtain

2-pl _P2

This assumes that packets from '\3 join A in proportion to the proba-

bility that Q1is empty. It has been shown that, by serving the non-

dedicated traffic in idle periods of Qand Q, the system achieves

close to two-server (M/M/2) behavior, thus reducing the packet delay

(averaged over the three queues) by a factor approaching 2 when

compared to two independent M/M/1 queues. The latter models the

random bifurcation with the non-dedicated traffic joining the ends of

queues Q 1 and Q2 according to a random rule. The introduction of the

middle queue is the essential key to improving delays.

An additional form of control exists in our priority rule, and may

be used to achieve certain values Of PA and PB without destroying the

16

multiserver behavior. This is possible, by taking advantage of non-

dedicated arrivals to a totally empty system. Then both servers are

idle, and the packet c n be sent to A , r B with preset probabilities

and 1 - , respectively.

Let PE = Prob. (Both servers are idle)

Then Pr [only A is idle) = 1 - PA - PE

Pr {only B is idle) =1- PB "

Pr {at least one server is idle) = 2(1 - p) - PE

The fraction of non-dedicated traffic which joins A can be modified

to

1- PA "rE +PPE 1 - PE(I " 0) f

2(1 - p3 - P E 2 -p, - p2 " PE

(Our previous results, apparently ignoring 1, actually assumed 1

1 - P2/2-Pl-P 2.)

Since PE cannot be evaluated in a closed form, we obtain bounds.

An upper bound is the M/M/2 probability of an empty system. This is

true since such a service mechanism assumes that all X1 , X2, X3 traffic

can use either server and thus achieves the best utilization. A lower

bound is for an M/M/1 queue. Thus

(1 - pA)(l - pB) <E 1 + p

A looser but more usable lower bound is 1 - 2p.

As an example let p = %. Then < PE < 3/5. If PI = P2 = p/2,

then for p = 1, a > 7/10 and for P = 0, a < 3/10. The range of control

using p is at least 40% of the total.

17

(Numerical results to come)

18

The interaction between the global quasi-static routing and the

locally adaptive strategy lies in determining average link flows at the

high level and designing the local policy in order to achieve them. In

terms of the riode model of Figure 7, the local problem can be formu-

lated as follows:

Given the input traffic 1 , X " (dedicated) and A.3 (nm- dedicated)

and the desirable output traffic XAP B' where X1 + 2 + "3 = "A + "B'

minimize the average queuing delay. In the preceding section, we

demonstrated how we can control XA to a certain degree using our

priority scheme and adjusting p (the probability of routing a packet

for A when both servers are idle). The impact of p can be significant

especially under low utilizations, but cannot always achieve the whole

spectrum of X A between A 1 and X, + X3 . As shown in Figure 7, at the

extreme values, the non-dedicated traffic becomes fully dedicated and

delays are that of two independent M/M/1 queues. At values of XA in

the middle of the allowable range, variations of p will provide the

desirable values with delays close to the M/M/2 lower bound. At the

extremes, we may have to violate the priority scheme and either defer

service of a non-dedicated packet in order to control its flow, or occa-

sionally break the priority rule in order to serve a non-dedicated

packet. Our objective is still to be able to fill-in idle periods ofQ1

Q2with non-dedicated packets as much as possible in order to minimize

delays. From a preliminary investigation of the problem, we arrived at

the following observations:

A. No action need be taken while the system remains in a state.

Actions may have to be taken at transition times of the state

vector. By actions we mean deferment of service or breaking

19

of priority. By transition times we mean any arrival or

departure time in any of the queues and servers of the

system. This observation follows from the Markov nature of

the system.

B. A countable number of points in the optimal delay vs. XA

curve can be obtained via deterministic policies, whereby

actions are assigned to states with probability one. This

follows from formulating the truncated state space problem as

a finite state Markov Decision process with average cost

minimization under a state frequency constraint (the specified

value of XAA) It is known that such problems lead to proba-

bilistic (randomized) action-state assignments in general [3'.

However by incorporating the constraint within the objective

function (average delay) using a Lagrange multiplier, the

problem becomes an unconstrained optimization problem, which

leads to deterministic policies [41. Due to the discrete finite

state and action spaces, only a finite number of optimal points

can be found using Lagrange multipliers.

A simplified version of the node optimization problem can be ob-

tained by deleting the dedicated queues Q1, Q,. Then the problem can

be formulated as an optimal control of output flows in an M/M/2 queue

as in Figure 8. The same arguments mentioned above indicate the

nature of the optimal policy as shown in the figure. We do have strong

indications that the deterministic policies are simple threshold schemes,

whereby packets defer using server B (if X A > 'kB unless the number

of packets waiting in queue Q exceeds a threshold K. Values of X A

in-between two threshold policies can be obtained by implementing a

random choice at the threshold.

20

A 1

A21 + (Of)A

Q
3 A

X2 2(1-p) 2

Q21

Delay

M/M/2 - - _ _ -

B

A AA

"3X

B x B

22

Delay

Deterministic
M/M/2Thresholds

'I0 AI
X/2 '

A A

B X

FIGURE 8

OPTIMUM DELAY IN M/M/2 QUEUES WITH SPECIFIED XA

23

B. Multiple Access Techniques with Arbitrary

Packet Length Distributions

B.1 Introduction

In our original multihop packet radio analysis, we assumed expo-

nentially distributed packet lengths. We have been able to generalize

the analysis for packet lengths having densities formed by the positive

sum of exponential terms (see Appendix C). In our analysis we as-

sumed that propagation delays among neighboring PRU's are negligible.

Thus in a Carrier Serving Multiple Access (CSMA) mode of operation,

collisions may occur due to the "hidden terminal" phenomenon only

(i.e., two non-communicating PRU's schedule packet transmissions to a

common neighbor simultaneously).

CSMA analyses incorporating the effects of propagation delays have

been reported extensively in the literature for single-hop networks

(i.e., all PRU's hear each other) and fixed packet sites. As a first

step in generalizing these results, we studied single-hop multiple access

protocols with non-fixed packet lengths. Although our main thrust is

on CSMA packet radio, we also derived formulas for pure ALOHA and

CSMA with collision detection (CSMA/CD). The former was a necessary

step in order to demonstrate the impact of packet length distribution on

the simplest multiple access method, whereas the latter is a straight-

forward extension of pure CSMA and is especially popular in local

networking environments. Note that the pure ALOHA case was studied

previously [5], whereas no extension has been reported on CSMA to our

knowledge. The CSMA/CD result is so simple that it may already be

known.

24

In what follows, we summarize the variable packet length analyses

in pure ALOHA, CSMA and CSMA/CD. In all cases we assumed infi-

nitely many Poisson sources and Poisson aggregate scheduling pro-

cesses, with rates s and g packets/sec respectively. Packet lengths

are distributed arbitrarily.

B. 2 Pure ALOHA

Referring to Figure 9, we consider a transmission of length Y

(shaded). This transmission will be successful if a) no other packet is

transmitted in Y seconds and b) no previously transmitted packet is

still transmitting. We are assuming zero capture. Calling these prob-

abilities Pa and Pb' we obtain s = gPaPb. But

a fe - g y fY(y) dy MY(-g)

where
co

MY(g) = f egy fY(y)dy
0

is the moment generating function of Y and fY(y) is its density. Pb is

found by considering the T second interval prior to the transmission in

question. Assume transmissions in that interval occur T. seconds
1

before the start of our test transmission and have length Y." Then

P = lim P(all Ti > Y.)T- x i

But the number of transmissions in T is Poisson and all are identically

distributed and independent. Therefore

25

P(all T > Y) = [P(T. > Yi)]k ke -gT
1 k=O - 1

-gT[I-P(T i > Yi)
_ -gTP(T i < Yi)

-e 1 e 1

Here Ti is uniform in the interval (0,T) and Yi is distributed as Y.

They are independent. Thus

T
P(T < yi) = f £ [1 - Fy(t)] dt0

and

TP(T i < Yi) f [1 - Fy(t)] dt = E(Y)
0

Here Fy(y) is the distribution function of Y and E(Y) its expectation.

Finally we have

s = gMy(-g) e - gE(Y)

Note that if Y is fixed then s = ge - 2g y as it should.

But Y is the length of the transmitted packets. Condition (b)

above does not involve the length of the transmitted packet Y. But

condition (b) does! Longer packets are more likely to suffer a colli-

sion. Let X be the length of the offered (or successful) packets. Y

should in a sense be larger since longer packets are retransmitted more

often. Due to condition (a) alone a packet of length x will be suc-

cessfully transmitted with probability e- gx and requires an average of

eg x transmissions to be successful. Thus

fy(y) = egy fx(y)/Mx(g).

26

Also

dM (g)E (Y) ___dg_/M x(g)

and Pa = 1/Mx(g)

Thus SM-= e -gMx ,(g)/Mx(g)

This also reduces to s ge 2 g x when Mx(g) = egx . This result has

been already established [5] but is derived here in a different manner.

B.3 CSMA

Refer to Figure 10 for CSMA. After an idle period a packet

scheduled with rate g is transmitted. The packet lasts for X seconds.

In the propagation time a after transmission any other scheduled packet

can also be transmitted thus causing a collision. We assume X > a.

Again we assume zero capture. If no such packet is transmitted, then

the original transmission is successful, lasts for X seconds, and is

followed by an a second period to clear the channel and the idle state

resumes. Thus the successful rate is

s = ge - g a P(channel is idle).

But P(channel is idle) 1 /gi 1/g + a + E(Z)

where 1/g is the average idle time and Z is the busy period exclusive

of the last a seconds.

To evaluate E(Z) we denote the times of the transmissions of

interfering packets as T i and their lengths as X. The number of such
1 1*

packets is exponential. Collisions depend only upon the propagation

time a and not on the length of the transmitted packet as in ALOHA.

Thus

27

Z = max IX, Ti + Xi}.

k g
and Fz(z) = Fx(z) I [Fw(z)]k! ke - ga

k=O

where W = Ti + Xi, Ti is uniform in (O,a) and is independent of Xi .

which is distributed as X. Thus

-ga[l - Fw(z)]Fz) =FX(Z) e

and E(Z) = f [1 - Fz(z)] dz.
0

The last two equations can be used to find E(Z), although not easily.

Finally

S 1ge-ga1 + ga + gE(Z)

B.4 CSMA/CD

Refer to Figure 11 for CSMA/CD (unslotted). Here collisions are

detected and transmissions aborted. Again packets are scheduled with

a rate g. After an idle period a packet is transmitted. If no packets

are transmitted in the next a seconds that packet is successful. After

a seconds to clear, the channel returns to idle. A scheduled packet

can be transmitted in the first a seconds and will cause a collision.

But it will be aborted a seconds after the original transmission. The

original transmission will be aborted a seconds after the start of the

colliding packet. Thus, as before,

28

s = ge - a P(channel idle).
1/g

P(channel idle) = ig + a/1/g+a + E (Z)

ga1
and Z - X, with prob. ega

min{T i} + a, with prob. 1 - ega .

Here we assume, for convenience, that X > 2a. Solving we get

cc k

E(Z) = E(X)e + I 1 + a) ga

= E(X)e-ga +1 - (1+ga)e - a] + a(1 - e - a)
g

or o= ge'ag

1 + gE(X)e + (1+2ga)(l-e

Note than only E(X) appears in the above equation.

29

IA 1

FIGURE 9

PURE ALOHA

30

idle I I1 'idle i
I'-* a--a

I. z i

FIGURE 10

CSMA

31

I +-a

idle Taidle

I ----a ---- I--a --41 I'--- a --- I

FIGURE 11

CSMA/CD

32

REFERENCES

1. R.R. Boorstyn and A. Livne, "A Technique for Adaptive Routing
in Networks," IEEE Transactions on Communications, April 1981.

2. D.G. Cantor and M. Gerla, "Optimal Routing in a Packet-Switched
Computer Network," IEEE Transactions on Computers, October
1974.

3. C. Derman, Finite State Markovian Decision Processes, Academic
Press, 1970.

4. S.M. Ross, Applied Probability Models with Optimization Appli-
cations, Holden-Day, 1970.

5. S. Bellini and F. Borgonovo, "On the Throughput of an ALOHA
channel with Variable Packet Lengths," IEEE Transactions on
Communications, November 1980.

33

PERSONNEL

Robert R. Boorstyn, Professor
Aaron Kershenbaum, Associate Professor
Basil Maglaris, Assistant Professor

Students
William Chuang (Algorithms)
Veli Sahin (Multihop Packet Radio)
David Tsao (New Switching Techniques)

Rachel Mendelsohn (Algorithms)
William Chen (Multihop Packet Radio)
H.K. Chao (Message Delay in Networks)

34

PAPERS PUBLISHED AND WRITTEN

A. Kershenbaum, "Generalized Augmenting Paths for the Solution of
Combinatorial Optimization Problems," IFIPS

J.F. Hayes & R. Boorstyn, "Delay and Overhead in the Encoding of
Data Sources," IEEE Trans. Communications, pp. 1678-1683, Nov.
1981

P. Chu, R. Boorstyn, and A. Kershenbaum, "A Simulation Study of a
Dynamic Routing Scheme," NTC '81, pp. A3.4.1 to 11, November
1981.

B. Maglaris, T. Lissack, and M. Austin, "End-to-End Delay Analysis on
Local Area Networks: An Office Building Scenario," NTC'81, pp.
A2.3.1 to 6, Nov. 1981.

A. Kershenbaum, "A Note on Finding Shortest Path Trees," Networks
journal, vol. 11, pp. 399-400, 1981

A. Kershenbaum and R. Boorstyn, "Centralized Teleprocessing Network
Design," to appear in Networks Journal.

35

ACTIVITIES

The following Ph.D. students completed their studies.

William Chuang, Probabilistic Analysis of Algorithms
Veli Sahin, Analysis of Multihop Packet Radio Networks
David Tsao, Comparison of Switching Techniques

Prof. Basil Maglaris joined our faculty and our research team.

Prof. Kershenbaum became Associate Editor for the journal of Telecom-
munication Networks.

Prof. Boorstyn is on the Standing Committee for the INFOCOM con-
ferences.

Prof. Boorstyn talked on Analysis of Multihop Packet Radio Networks at
Bell Laboratories and on Adaptive Routing at CCNY.

36

APPENDIX C

THROUGH? r' T.-ILLS OF ML71HOP ?A4CXET RA4DIO NZWORKS

Robert R. 3oorsty-n and
Aaron Kershenbaum Vei Sabin

Polytechnic Institute of Bell Laboratories
New York Holmdel, New Jersey 07733

333 Jay Street,
Brooklyn, New York 11201

ABSTRA C 7

We consider the problem of obtaining exact expressions for throughput and blockirg
probabilities in multihop packet ratio networks operating under CSIMA. We obtain exact results
for a general class of message lengths, for general topologies, and for perfect capture. T1-hese
reults are obtained by assuming perfect acknowledgments.

1. INTRODCTION

We consider the problem of obtaining exact expressions for throughput and blocking

probabiitis in mulibop packet nadio networks operating under carrier sense multiple access

(CSMA). Procedures are developed which can h used to analyze general topologies for a

general class of pwekZet length aiistribution. E.xamples of chains, rings, and stis. zre prtsented.

11. THE %,NVORK MODEL

We consider the problem of analyzing tile throughput capability of a multihop p~ack.-:

raio network operating under carrier sense multiple access (CSMA). Thus, we assume that

the network is comprised of termiunals equipped with radio transponders suitable for

broadcasting data over a limited distance. In general, the source and destination terminals

This research was ;Xzzia.!y su-erned ay USAR.MY CzNCOVS ulcer Conrac. DAAK 300K019 and by the
Natioral Scence Foundauan uiner Zmnt 24G*79-08:10.

o2-°

cannot hear each other directy, and the data has to be relayed by one or more intermediate

devices. A separate set of devices, called repeaters, may exist for this purpose, or the terminais

themselves may relay messages for one another.

Control of the network is completely distributed, i.e., no station or central control

mechanism is assumed to exist. Rather, we assume that each source terminal has prestored

one or more routes to all destinations and includes all necessary routing information in the

packets if transmits. These assumptions are made merely to simplify the presectation. In fact,

the results presented are valid for networks using alternate routing as long as routing changes

are not made over short time intervals. One of the motivations for this study came from a

consideration of the design of routing procedures for such networks. It was necessary,

however, to first develop an understanding for the throughput of various topologies.

ExoSenous trafc is modeled as independent Poisson processes arriving at each

source node, with appropriate rates and packet lengths. Te topology is specified "y a listing of

which terminals (or reper.:ers) can hear each other. In the rermander we will not distinguish

between terminals and repeaters and will refer to them collec:ively as either terminals or nodes.

In general the transmissions of one terminal can be heard by many other terminals. The

routing will specify which terminal is to repeat the -packet, if necessary.

If two or more transmissions are simultaneously heard by a terminal (called a

"collision*) at least one, and possibly both, is 'lost* and must be retransmitted. We assume

retransmissions are scheduled at a random instant in time sufficiently far in the future so as to

preserve the Poisson nature of the combined traffic stream, which now consists of exogenous

traffic and rescheduled traffic. For this study, we assume th.at a packet can be retransmitted as

many times as is necessary, i.e., that there is no maximum allowable number of

retransmissions.

At any time, terminals may either transmit or receive, they cannot do both

simultaneously. Before transmitting, a terminal senses the channel. If it detects that any of its

.3

neighbors (i.e., terminals that it can hear) are transmitting (by. e.g., sensing a carier) it

reschedules the transmission as for colded packets above. If at the scheduled time for a

trmnsmission, the terminal is already engaged in transmitting a packet, the new packet is also

rescheduled as above. Thus packets are continually rescheduled until they are successfully

delivered to the next terminal on their route. We assume that the total stream of traific

scheduled by any terminal is a Poisson process. This includes orginating trffic and packets

rescheduled either due to collisions or due to the channel having been sensed busy. This

scheme is called crrier sense multiple access (CSNIA). The Poisson assumption is valid for the

assumptions made above and will yield acc.rate results for throughput. Compromises will have

to be made, however, if an accurate picture of time delays is to be considered.

It is possible, due to non-zero propagation delay, that collisions of transmissions

from neighboring terminals may still take place despite the -'MA strategy. This will occur if a

terminal senses the channel before another terminal's transmission is received. Th'is effect is

small if terminals are reasonably close or are not transmitting at high speed. We will ignore this

phenomena here, and assume that all transmissions are instantly heard by their neighbors.

A passive acknowledgment is used for transmission to neighbors. The transmitting

terminal listens to the channel to hear if a packet is being rebroadcast by a neighbor. If after a

prespecified time interval, the transmitting node does not hear the packet rebroadcast, it

retransmits the packet. But the packet may have been successfully received by the neighbor

even though the originator does not hear the rebroadcast. Duplicate packets may be

transmitted and deleted only at the fnal destination or they may be detected and deieted earlier.

An end-to-end acknowledgment is returned to the originator from the inal destination. In this

paper we assume that passive acknowledgments are always heard L' ignore the effect of end-

to-end acknowledgments. Alternately, these acknowledgements could have been added to the

required traffic. (In a sequel paper, the effect of passive acknowledgements will be studied).

We depict the topology of the network by a graph where terminals are represented

by nodes. The nodes are connected by a Link if they can hear each other's transmissions. i.e.. if

they are neighbors. As an example see Figure 1. Node A can hear node B. but not node C.

Node B can hear both nodes A and C. Node C can hear node B. but not node A. If node A is

transmitting to node B and node C begins transmitng. then the transmission from A to B may

be lost depending upon the *capture* assumptions we make. A conservative assumption is that

the A to B transmission is lost - this is kzown as zero capture. Alternatively, perfect capture

assumes that this transmission is successfully received. Half-amplitude capture assumes that

the transmission is lost if C dominates A at B. This can happen if C is closer to 3 than A is to

B, or has a greater signal strength perceived at B than A has. If A dominates C, then the

transmission is successfuL However, in all cases of a collision we assume the later transmission

is lost. Thus if C is transmitting to B, this packet is lost in all cases. We will consider only

perfect capture situations below. Note that under CSMA if node B is transmitting, neither A or

C is allowed to transmit.

We assume that a routing has been specified. This takes the form of deciding which

of the neighbors are to rebroadcast a packet from a particular source to a particular destination.

Thus the amount of traffc that a terminal wishes to send to its neighbor can be computed. If

these rebroadcast packets are scheduled at a random time far in the future the Poisson

assumption for traffc streams is preserved. We assume that the traffic between neighbors is

specified and form independent Poisson proceses. We assume that the packet length is

reassigned independently at each hop. This is analogous to the 'independence assumption' in

queuing networks.

The details of CSMA for a single hop network can be found in the papers by Tobag

and Kleinrock (1) . Tobagi has also developed some simple models for two-hop networks(

Details of a packet radio network can be found in a paper by Kahn () . A discussion of routing

in multihop packet radio can be found in the paper by Gitman, Van Slyke, and Frank (4) An

earlier version of this paper was presented at ICC'80(5). More details can be found in the

thesis of Sahin(6).

o-.

III. GENERAL RESULTS

In this section we develop some expressions that are valid for the packet radio

network we have modeled above using CSMA and with an arbitrary packet length distribution.

Let i be a node, xf one of its neighbors, N, the set of all the neighbors of i, and N1 the set of

all i's neighbors, including L Let : be the total rate (in packets/sec) of all scheduled traffic at

node i. This includes originating traffic and all rescheduled tra c and is assumed to be Poisson.

Let l/it, be the average length of packets transmitted by node L Let G, - C/if be a

normalized rate.

Node i is ethen busy (transmitting) or idle. It wifl transmit a scheduled packet if at

the instant it is scheduled all nodes in N are idle. Let A be a set of nodes. Let P(A) be the

probability that at a random instant all nodes in A are idle. The nodes not in A may or may

not be idle. Similarly P(i), P(i.A), P(A.B) are the probabilites that i is idle, node i and nodes

in A are idle, and all nodes in A and B are idle.

Since traffic is scheduled at node i with a Poisson rate Z, will be t-ansmitted oaiy if

, is idle, and transmissions have average length I/#t, the probability that i is busy is given by

I-P() - OfP(N,) (1)

If i is busy then under CSMA, nf must be idle. Then since

P(nf) - P(n,,i) + P(nIf bwy)[-P()]

and P(nIi fbusy) -1, we have

P(Sm) P(0)My-iA - I

Similarly, if A C I'v,

-6-

P (A.J) -P(A) -P (i)- 1 (3)

lotting A - N in equation (3). and using

P (N') - P(N)/P(f rN)

we get

P(i I~')- 1 (4)
I+G

Equation (4) is often found in CSMA literature.

A packet from i to n, will be transmittd when it is scheduled if N is idle. During

the transmission at nodes in N will be idle. It will be successfully received at nj if all

neighbors of n, not in N are also idle at the beginning of transmission. Otherwise a collision

wi occur. Let sj, be the rate in packets/sec. determined by the routing and assumed Poisson,

of the trac that i wishes to send to d;r. This is the required throughput or offered tmfc. Let

&A be the rate of al scheduled trafc from i to n1 . We have also assumed that all these

streams are Poisson and independent. Of these gj, packets per second. si., must be

successful. Thus

&al f.,,

where S,,, - tfs,, and G,.., Zt..1 A/,

The total scheduled trafc (normalized) at a node is given by

G- G, (6)

From equations (1) through (6) we wish to derive a relation between the S,,, and G,. and

-7.

determine the maximum St., the network can support. This we call the (maximum)

throughput or capity. In the next section we develop this relationship for exponential packet

lengths and arbitrary topologies. Later we extend the analysis to a general class of packet

length distributions.

IV. EXPONITALLY DISTRIBUTED PAC T LLNGT-S

If the packet lengths are exponentially distributed., then the system can be viewed as

a Markov process where the states are identified by which nodes are idle and which are busy.

LetD bea set of busy nodes. Becase or MA, no nodes in D may be neighbors of each

other. Let Q(D) be the probability that at an instant of tine, all nodes in D are busy, and all

nodes not in D, are idle. Then each set, D, represents a state in a .arkov system, and Q(D) is

the st te probability. In particular, the null set D - @, reprsents the state that all nodes are

idle.

Assume the system is in state D. It will leave the state if any i eD stops

transmitting. This happens with rate ;&. Thus the transition to state [D-il occurs with rate ;.

The only other way to leave state D is for on of the idle nodes that is not a neighbor of any

iD to begn to transmit. This occurs with rate ;. Let zp be the set of all neighbors of ail

nodes in D. Then the transition from D to {D+j}, jeNVD, occurs with rate gj. The global

balance equations for this system are

(;k + j)Q(D) - gQ(D-) + T 1 Q(D+j) (7)

where D is one of the special sets defined above.

It is easy to see that these equations are satisfied by

Q(D) - Q (D-i) - G(D-i), teD (8)

L!

- S.

Thus

(D) - II G,) (0) (9)

where we adopt the convention that 11 G, - 1. Summing over all D, we geti'.

aD 'D$t

In the previous section we found we were interested in quantities like P(A), where

A is any set of nodes, and P(A) is the probability that ail nodes in A are idle, and all nodes not

in A may or may not be idle. This can be found by summing Q(D) over all sets D that do not

contain nodes in A. Thus

P'(A)- Q(D)-- IIIA' . (
0 CA' DCA' 1

where D CA' refers to all such sets contained in the complement of A and N is the set of all

nodes. We adopt the shorthand notation.

sP(B) T, (fi G,) (12)
DCJ

where SP refers to sum of products. Thus

P(A) -- SP(AC)/SP (V) (13)

Equations (5), (6), and (11) can be used for any topology to generate the solution

to our problem. The equatioas relating the Sr,, G., and Gj can be solved iteratively. For

example, equation (3) now becomes

.9.

S.,, SP (IN, -1V.1] 1)
G,^ SP(N)

where by A+B we man the union of A and B.

Evaluation of sums of products in equation (12) are made easier by the following

two rules. Consider two sets of nodes A and B such that no node in A can hear any node of B.

Then

SP(A+) -SP(A) SP(B), A fB-o (15)

ALo,

SP(A) -SP(A--i) + GtS(A-Nt), ieA (16)

To prove these rules just consider all products. We have successfully evaluated many complex

topoloies with these procedures.

There are other relations which will be found useful in extending our model to more

complex situations. We prove some of these below. Let C be a cut, i.e., a set of nodes that

divides the network into three parts A. B, and C, where A and B have no neighbors in common

as in equation (15). Let A-A I+ A2, 3 - B + B. where AIA 2 " B1B2 - . Then

P(AIIC,BI) P(A,,C,BI) SP(A 2+B.) SP(A)

P(C. 1) SP(A-+B. SP(A)

But

PCA1C) -P(At,C) SP(A 2-B) SP(A:)

P(C) SP(A-rB) SP(A)

Thus

- 10-

P(A IC,BI) -P(4 1iC), Ca c-.a (17)

we also have

P(A1 .BIIC) - P(AIC)P(BIIC), C a a (18)

In paricular if C -Nthen

P(U1N"I,) -P(,UL'), B CA (19)

V. A GLNXRAL CLASS OF PAC,,r LENGTH DISTRIBUrIONS

In this section we extend the results just proven to include a general class of

distributions for the packet length. We will show that the procedures developed for perfect

capture are independent of packet length distribution. To prove this we start with a simpler

extension. In the above we assumed that all packet lengths are exponentially distributed and

have the same mean when tansmitted by a node to any of its neighbors. Different nodes may

transmit different averge length packets, however. Now assume that while all packet lengths

are still exponentially distributed, the average length packet transmitted from a node may be

different to each of its neighbors. This will be useful in analyzing different protocols (to be

presented in a ?-nuel paper) but is presented here as the first step in the desired extension.

Now the stue of the network depends upon who is transmitting and to whom. We

can keep the same structure by breaidng every node into a set of "micronodes', one for each

neighbor. These nodes may be indexed by (i,^,). If i is transmitting to nR then this node is

active, otherwise it is idle. Micronodes are connerted in our topology if they can hear each

other. Since CSMA still prevails, all micronodes for a given node are fully connected.

Furthermore all micronodes for nodes that are connected in the original topology are also fully

connected. The analysis now proceeds as above since the Markovian ;roperty has been

maintained. For example, equation (14) still holds, but now N, and N, are collections of

micronodes. Note that .V contains the full set of rricronodes for i and all neighbors of i. Sj.,

and GI,, have the same meaning as before. However they are normalized by 1 /Jf.a, the

avenge packet length for packets going from i to nf. The terms in the sums of products are

for the micronodes.

Let A contin full sets of micronodes and include the node i. Then from equation

(16)

SP(A) -S (A -(i.ni)] + G,.,,(A -N) (20)

Hee we have used the fact that V(i.,) - N1, and the notation that , is the set of all

micronodes of i and neighbors of i. Since this is equivalent to the original set of node

neighbors of i we keep the same notation. Repeating for all neighbors of i we get,

SP(A) -SP(A-i) + (2 G1,.)SP(A-i) (21)
xf

If we let

G, Gt=. ,.,- =/,,,)
$1 A

then equation (16) is preserved. In a similar manner all previously derived equations can be

maintained where Gj takes on the definition in equation (22). Here 1/,U, is an average packet

length, averged over the different average packet lengths to different neighbors in proportion

to their scheduled rate.

We now prove our main theorem for this section. Assume that the length of

packets transmitted from i to nj has the density

12-

f,. (z) - a(23)
J

where

at Z 0 and a,.j -I

Thus the lengtb is distributed as a positive sum of exponentials. Another Way of looking at this

is that the a's are the probabilities of choosing the associated exponential density. Now create

micronodes for each triple (inJ). Herm we use

$1j , -- ,^. j/1. A j whe t l. ,J -at ^/.T. The micronodes for some i and any nj are

fully connected as are the micronodes for neighboring nodes. Equations (20) and (21) now

become

SP(A) - SP (A - (i .i j)] + G.^,JSP A-.) (24)

and SP(A)-SP(A-i)+ GI ,A.,jP(A-I) (25)

In the same manner as above, we let

G s- a,. j - --

71 f

These equations are used to find P(A) in terms of Gi and are identical in form to those derived

for exponentially distributed packet lengths.

Equation (5) in turn comes from

13-

Summing over j, we get equation (5)

- Z S, -G,.' Nv) (.2)J

Thus all relations between the G's and the S's are preserved. The actual nature of the problem

is taken into account by the relationship between the S's and the normalization by the jt's.

We can now restate the above theorem. Let i be any node and j #N, the

neighborhood of L Let sfj be the successful (desired) rate from i to j, in packzts/sec. Let the

density of the packet lengths be

f, 4 (x) - a,4 .jAs 14 exp ~ whn A (J.* > 0, a - 0.

and - .

Let l/j, afjt/Af,, be the average packet length, in seconds. Let Sj, - s,:, . T1hen

Sf' F" P(seU)- a funcion of (GiG:,)
f'j

where

- Z GI,.

Proof:

let IJ, k 2f'- k,,i.

Then 11,1.k - aij. j -P(.V ,vj)giJ.A

14-

Dividing sfj by Ajjk and summing over k. we get

S, - P(I uVj)G 4

VL EXAMPLES OF THE PROCEDURE

As an examp/e consider the chain of four nodes shown in Figure 2. We assume

S12m SM,- - Sn - S3 - S 3 - S for simpiity, and perfect cpture. Also note that

G 12-G 1, G4,3 G4 and by symmetry G1 -G 4, G1-G3., and Gz,-G3:. Also from

equation (6), G. - G.. + G~j - G3. From equation (5), we have

S S SG - P(1,2,3)---l -:I -: l(1,21),3.4i)

But

SP(,N) - (fiGI) - 1 +" G, " G. + G 3 +4 GG 3 + G,G, GIG,

- 1 + 2G, + 2G2 +" 2GIG. +, G2 -. 1

and

P(I.2.3.4) ,- I/.A, P(l,2.3) - (!'-0,)/A l - |/

Solving, we get

G: - G1(26--G1) and S - ---G

or

S - G 1(1- -G)/(I -6G 1+7G I -- 2G?).

-15 -

We can now ind the maximum value of S possible. the throughput of the chain. which is .1"3,

obtained when G , - 0.71.

In general the equations cannot be solved as simply as for this four node example.

Equaton (11) is used to get expressions for P(A) in terms of Gj . Then equaton (14) is used

to get expressions for St, in terms of Gia, and P(A). Equation (6) provides the relation

between G, and Gt,. The S1,, are found from the offered trafc, the routing, and other

assumptions and are considered as inputs. The equations are iterated until a solution of O's for

a set of S's is found. The maximum set of S's possible is considered the throughput, or

Cpacity, of the network. For some modest size problems, as above, the equations can be

solved directly.

As a second example consider the star topology shown in Figure 5. Here assume

there arc L legs of N - 2 nodes each. Denote the center node by 0, the nodes one hop out by

1, and the other nodes by 2. Further assume symmetrical :tafc in the nodes and

Sol " Sio " St: " S1 - S. Then LS is the total traffc successfully transmitted by node 0. The

equations are

Sol LS Sto S -P(ad1 b L-1 2nodes)- SP(L-1 0.2 nodes)
Go Go Glo G'o SP (N)

S12 S2 SPL IeOy)- (-I 0evL)
Gz G 12 G21 - ,2) " SP (I

where

A - SP(,V) - 0 G I.,-GDL Go(l--G,) L

G, - Go + GI.

But G I(GodL and G12 - G,, so G, - G: + G/L. Thus we have two equations:

-16-

LS/Go - (1+G)L-1 /1 and S/G, - (1 2G:',g/")L./.

For any S < S., they can be solved for Go and G:. Alternatively for any Go we can find the

corresponding G: by solving

Go(+ - G:('2G"Go/L)-.

Then the relation between S and G 2 can be studied. We then find the maximum S. Sm,

possible. L.S. is the maximum throughput of the star.

For larger problems we will get several equations of the form

Go - -5' (1-+ z)'- 1

G2 - SA/(1+2G2 -Go/L)L-

For any S we solve these iteratively. Since Go- - LS, G I--t 2S, and G. Z S, the lower

bounds are good starting points for G1. For S sufficiently less than SL' we have found the

iteration converges monotonically and rapidly. As S approaches S.. from below the

convergence is still monotonic but slows appreciably. For S > S.,. the iteration does not

converge and often diverges dramatically. We have uncovered no serious numerical problems

with this procedure in the many examples we have evaluated.

VII. NUMERICAL EXAMPLES

We consider here three different topological structures with exponentially distributed

packet lengths and perfect capture. We assume all Sj., - S, for all i, and take full advantage of

symmetry. The three topologies, shown in Figures 3, 4, and 5, are a chain, a ring, and a star,

all with various lengths. In each case we find the maximum throughput. S. These are given in

Table I.

The maximum one way throughput for a long chain is S - .086. This throughput is

approached when the lengths of chains exceed 10. For smailer length chains the throughput is

17.

higher. In C-MA transmissions of neighbors may not overlap in time. Since each nodes

transmits successfully ZS packets per average packet transmission time, then we must have S <

1/5. The throughput is slightly sma,,Ia- than half of this limit. The cause of the reduction is

collisions from transmissions two hops away, the so-called 'hidden terminals'. The throughput

of S - .086 for a chain, although the maximum possible, is not a useful operating point. As in

ALOHA. this is the point at which delays become infinite and the system is unstable. The

network would have to be operated at some lower leveL

It is instructive to compae the performance of multihop CSMA with that of slotted

ALOHA. Let p be the probability of transmission in one direction at a node. Then S - p(l-

2p) 2 for a long chain. S,, here is .074 which is approximately 14% less than that for CSMA.

There are two factors woring here. CSMA will produce less collisions since neighbors will not

interfere with each other. Hidden terminals will still produce colisicns. (All terminals are

hidden in ALOHA). But CSMA prohibits possible successful Leanszissions. For instance,

node 3 can transmit successfully to node 2 while node 4 is transmitting successfully to node .

This is possible in ALOHA but prohibited in CSMA. This is one of the prices pid to control

collisions.

We note that for a ring greater than 7 nodes the maximum throughput is the same

as that for a long chain. This is expected since the congestion is now in the middle and it is

unimportant whether or not the chain is closed. A star with two legs is just a chain with IN for

the star replaced by 2N+ 1 for the chain.

Consider the star configuration as representing the center node (0) trying to transmit

to some node or nodes far away via many repeaters. For one leg, the maximum rate is .086.

For two legs, the maximum rate is ZS or .172, exactly twice. The results are shown ini Table 'I

where the throughput of the center node is given by LS. We see from Table I that whereas

the throughput doubles for L - 2. it increases only by .0% when L-3, by 4-5% further when

L-4, and by 2. when L-5. Congestion at the central node is limiting its ability to increase its

-18-

throughput. Additional legs. beyond three, are not really helpful.

We have investigated ways of reducing the congestion at the center node. For larger

L, the traffic in each leg is limited by congestion at the center. The collisions that cause most

problems are for transmissions from the first level of nodes (1, N+I, ZN+ I,.... (L-I)N-1) to

the center. These are collided with by other first level nodes. To reduce these collisions we

considered connecting the first level nodes in a ring and then fully connecting them. These

results are also summarized in Table L When the first level is unconnected the throughput

saturates at .229. When the first level is fully connected the throughput with 9 legs is .252, a

15% increase. For four legs, the- ring connected topology is best, providing some compromise

between reducing collisions and allowing simultaneous transmissions.

The best that we can expect in the fully connected case is LS - 1/3. This is

because all t-ansmissions from the center node and all first level nodles cannot overlap. We will

discuss asymptotic results with even larger stars and chains in the next section.

VIII. ASYMPTOTIC RESULTS

We are interested in asymptotic results for several reasons. They provide is with

the limiting behavior of the finite networks previously studied. Since the behavior of these

networks seems to converge rapidly with their size, if asymptotic results are easier to obtain,

they would be useful. We are also interested in very large networks. A final reason is to verify

some of the bounding arguments on throughput made in the last section.

We first consider an infinitely long chain. We let Sf,-, - Sf;- - S. Then all nodes

are identical. Also G.t - Gij-. - G1/2. Thus with G - G,

2S - P-lSi il i-2) - SP -- ... i-2SP(i - -..... (Zq

G, G S

We can write the denominator as

19-

Now let We observe that Qt 2 I for k 20 and if it

converges is independent of L Then equation (29) becomes

2S25 1q (30)

G Q Q2+6Q I

But

S(- k-) + G SP(-= +k-2)

and Q 0 1. Thus QQ '0. Therefore

Q2(QI + 2G)

or

S G (32)
2Q,(QI 2G)

Q1
We note that since Q-i ',from equaton (31) we have

G G

G-Q 1 (Q1 -- l) (33)

Finally we have

£ " 2QI(2QI-I) , 1 (34)

The maximum value of S is .086, reached when Q, - 1.7 or G - 1.2.

-20 -

IX. XTENSIONS AND CONCLUSIONS

We have presented a simple but fairly realistic model of a multihop packet radio

network and have obtained maximum throughputs for general topologies and packet lengths.

We have assumed perfect reception of acknowledgments and have not included additional traffic
-J

due to end-to-end acknowledgments. Some aspects of acknowledgments can be included by

increasing the required traffic. We are investigating the effect of imperfect acknowledgments

and different retransmission strutegies. The model should still be useful under these

extensions.

REFZP.EVCZS

(I1 L Kicinrock and F. Tobgi, 'Packet switching in radio channels,* parts I and 11, IEEE

Trans. Commun., vol. COM-23, pp. 1400-1433, December 1975.

[21 F. Tobgi, 'Analysis of a Two-Hop Centralized Packet Radio Network', Part I: C5MA

IEEE Trans. Commun., COM-23, pp. 208-216, February 1980.

[31 R. . Kahn, The organizaon of computer resources into a packet radio network,' IEEE

Trans. Communiations, Vol. COM-25, pp. 169-178, January 1977.

(4] L Gita, R. Van Slyke, and H. Frank, 'Routing in packet-switching broadcast radio

networks,* IE.E Trans. Communications, vol. COM-24, pp. 926-930, September 1976.

[51 R. Boorstyn and A. Kershenbaum, 'Throughput Analysis of Multi-hop Packet Radio

Networks,' IEEE-ICC*30, pp. 13.6.1-13.6.6, Seattle, WA., June 1980.

(61 V. Sahin, 'Analysis of Multihop Packet Radio Networks', Pb.D Thesis, Polytechnic

Institute of New York, June 1982.

Table !

Maximum One-Way Throughput (S)

Number Star

of Number of Legs, L

Nodes, N Chain Ring L-2 L-3 L-4 L-S

1 1.000 1.000 .167 .103 .074 .058

2 .500 .500 .111 .076 .057

3 .167 .167 .097 .072 .055

4 .128 .073 .092 .070 .054

5 .111 .100 .069 .054 .044

6 .102 .083

7 .097 .087

8 .094 .085

9 .092 .086

10 .091 .086

.086 .086 .086 .069 .054 .044

Table II

Maximum One-Way Total Throughput of the

Central Node in a Large Star Arrangement

Maximum Throughput, LS

Center Arrangement

Numbw of Lev Unooecgtd RIn-Conneaad Fully Connected

1 .086

2 .172

3 .207 .198 .198

4 .216 .228 .216

5 .220 .230 .2.30

6 .220 .240

7 .245

8 .248

9 .252

/LN

O (L-4) N*2

IN+

2H Frlure S. A star n tt'wrk (L logs)

A BC(

Fix I. A PCX? Of 0l nevNi 3

2

2 3 N

Flqreo 3. A Chiain

APPENDIX D

To appear in Networks journal.

Generalized Augmenting P?:tns for the Solution of Combinatorial
Optimization Problems
Aaron Kershenbaum

Polytechnic Institute of New York

Abstract

Alternating chain procedures' can be thought of as generalizations of the greedy

algorithm in that inste._d of accepting the best remaining element, they seek to

obtain a better augmentation by examining a wider range of alternatives. It is

possible to generalize the notion of an augmenting sequence to include augmentations
which are in effect trees as opposed to simply paths such that these augmentations
are sufficient to guarantee optimality. Unfortunately, in the worst case, these
trees are of exponential size. We examine the application of such generalized
augmenting sequences to the solution of NP-complete problems and examine their
effectiveness and efficiency.

I troduction

The theory of NP-completeness, which was first expounded by Cook [1], has led
to a search for a unified treatment of combinatorial optimization problems. Cook.
was able to characterize a very large class of interesting and important problems

as being equivalent in the sense that an efficient algorithm capable of finding an
optimal solution to any one of these problems can be used to obtain optimal solu-
tions to all of the others. Many papers by many authors and an excellent com-
pendium [2] of problems in this class (as well as techniques for proving that a
problem is in this class) have been published since Cook's seminal paper. Prob-
lems in this class are called NP-complete problems (or, more properly, NP-hard when
they are optimization problems as opposed to decision problems).

Cook's results can be interpreted in several ways. One of these is to say that
many clever people have spent many years trying and failing to find efficient
algorithms for individual problems in this class. Surely one of them would have
succeeded if, in fact, such algorithms existeA. Hence, it is unlikely that such an
algorithm will be found and it is tempting to stop looking for one. This leads to
the development of heuristics for the solution of such problems [3] and to proba-
bilistic methods (4].

An alternate interpretation is that this pessimistic view is justified only with re-
spect to algorithms which guarantee optimal solutions and reasonable runtimes for
all instances (input data sets) of a problem. In this paper we speak of an algo-
rithm's ru.-.time being reasonable if it grows polyncmially rather than exponentially

with the size of the problem. This does not preclude the existence of algorithms

with guaranteed reasonable runtimes and which yield optimal (or near-optimal)

solutions with high probability. Nor does it preclude the existence of algorithms

which guarantee optimal solutions and which have reasonable runtimes with high

p -obability. There are many examples of both types of algorithms which are used

in practice to solve specific NP-complete problems. Most important, the theory of

NP-completeness does not preclude or even lessen the likelihood of the existence of

algorithms which solve specific (nontrivial) instances of a problem and guarantee

both an optimal solution and reasonable runtime.

In this paper, we explore this second, more optimistic, point of view and present
a family of algorithms for the solution of an NP-complete problem. Some algorithms

in this family have guaranteed reasonable runtimes. Others guarantee optimal

solutions. While the algorithms are presented for the solution of a specific prob-
lem, the technique can be extended to the solution of other problems as well.

Matroid Theory

A specific way of approaching the solution of many combinatorial optimization

problems is via matroid theory. The excellent book by Lawler [5] gives a complete

treatment of this. Here we outline the fundamentals of this theory which are

necessary for the presentation which follows.

A matroid is a couple (E,F) where E is a finite set of m elements:

E = {e. I i = 1,2, ... M}

and F is a family of independent subsets of E. The notion of independence is

quite general. We require, however, that it satisfy two properties:

PI: Every subset of an independent set is independent, i.e., if

I & F and " C I then I s F

P2: If Ip and I 1 are independent subsets of E containing P and P + 1
elements, respectively, then there exists an element, e e IP+I (e 4 r)

such that Ip P - (e} is an independent set containing P + 1 elements.

Given two matroids, (E,F 1) and (E,F 2), defined on the same set of elements, but

using two different notions of independence, we define an intersection of them to

be any subset, I(E, such that I e F1 , and I e F2 . This definition can be ex-
tended to cover three or more matroids as well.

Many combinatcrial optimization problems can be thought of as finding the best

independent set in a matroid or the best intersection of two or more matroids. If
weights, wj, are associated with the elements, ej, in E, then one can speak of the

best set as being the one with largest total weight. The maximal (or minimal)

spanning tree problem can be thought of as finding the maximum (or minimum)
weight independent set in a matroid (E,F) where E is the set of edges in the

graph and F is the family of forests. A forest is defined to be a set of 0 or more

edges which do not contain a circuit. As another example, Lawler [5, p. 304]

shows that the Traveling Salesman Problem can be thought of as finding the best

intersecticn of three matroids. The problem of finding the maximum weight inter-

section ot three matrcids has been shown to be NP-complete [2]. Lawler snows [5,

p. 364] that the problem of finding intersections of four or more matroids can be

reduced to that of finding intersections of three. There are many other combina-

torial optimization problems' which can be naturally thought of as matroid intersec-

tion problems. The theory of NP-completeness assures us that all problems can be

thought if in this way.

We will consider one of the simplest possible 3-Matroid Intersection Problems in the

sequel for the sake of clarity. The problem considered is the Three Dimensional

Assignment Problem (TDAP). In this problem, we are given N people, N jobs,

and N days. There is a cost, Cijk of having person i doing job j on day k. Each

person is to do only one job, each job is to be done only once, and only one job

is to be done on a day. Formally the problem is:

Minimize Z ZCijk Xijk
i,j,k k ij

such that

Z 'k Z = 1 X k k 1 for i,j,k : 1,2, ... Xijk e
ij i,k j,k ijk

Thus, setting Xijk to 1 corresponds to having person i do job j on day k. This
problem can be viewed as an intersection of three partition matroids. Given a set

of elements, E (in this case, the X ijk), a partition matroid can be defined by a

partition of E and a vector, A, constraining the number of elements of E which

may be selected from any part of the partition. Formally, we have the partition of

E into subsets Ej, j = 1, ... k, where

U E. E and E. ,-E. = E for i # j

and an integer vector A =a.! j = 1, ... k}

A matroid (E,F) is then defined where F consists of all subsets, I, of E formed by

selecting no more than ai elements of E.

In the case of the TDAP, the first partition of the X is by person, i.e.,ijk

Ei = {XijklJ i , ... N; k = 1, ... N}

and a. 1 for all i. The independent sets in this first matroid correspond to
assigning each person at most dne job. Similarly, two more matroids can be de-

fined to constrain jobs and days. Intersections of these three matroids correspond
to feasible partial a3signments and intersections of maximum cardinality correspond

to feasible compiete assignments. If we define weights W.ijk associated with

ijk

wijk k C ij k

where C is larger than any C ijk then the maximum weight intersection corre-
sponds to the optimal solution' to the TDAP.

Augmenting Paths

We now define a family of algorithms for the solution of matroid intersection prob-

lems. These are generalizations of the basic procedure given in [6].

Given a matroid (E,F) (and hence a notion of independence) and a (not necessarily
independent) subset S, of E, we define the span of S, denoted sp(S), as S to-
gether with all elements of E not independent of the elements in S, that is

sp(S) = e I I [e} I F where I is any independent subset of S}

If S is an independent set and e & sp(S) then e forms a unique cycle, which we
denote by C(e), with S. A cycle is a dependent set which becomes independent if

any element is removed from it.

If the matroid intersecticn problem only involves two matroids, we can obtain

a maximum weight intersection by producing a sequence of intersections, I
containing K elements, for K = 1,2 ... m. Each I(K) is the maximum weight

intersection containing K elements. The algorithm which produces the I(K) is

called an augmenting path procedure because it augments I(K) to produce I(K + 1)

,r finding the longest path in the graph G(K) defined below.

We define G(K) to be a bipartite graph with nodes corresponding to the elements,
ej, of E plus distinguished start and finish nodes, a and z. Directed arcs are
defined as follows:

(a,i) i & E - spl(I(K)) i,j) i e E - i(K) & z C(2)(i)
(i,z) i & E - s2(I(K) (ji) - I(K) , C(1)(i)

Paths from a to z correspond to augmentations of I) , that is, to sets of elements
to be added or deleted from I(K) to produce an intersection with K + 1 elements.

Notice that all a to z paths go alternately through nodes not contained in 1(K)

(which are to be added to I(K)) and nodes in I (K) (which are to be deleted).

Note also that there is one more node of the former type than there is of the
latter and hence an augmentation results. If we associate lengths with the arcs

equal to the weights of the elements which the nodes c'.respond to (positive for

elements to be added and negative for elements to be deleted), then the length of

a path corresponds to the increment3l weight of the augmentation. The longest

path results in an optimal augmentation. Such a path can be found using a short-
est path algorithm suitably modified to find longest paths. G(K) contains no

positive cycles and so the algorithm converges.

These augmentations do, indeed, result in intersections. As one passes through

nodes from a to z we see that an element is added preserving independence in the

first matroid but not the second. An element is then deleted restoring indepen-

dence in the second matroid and hence the intersection. A node is then added
which, because of the deleted node, maintains independence in the first matroid.

This process continues until the added element maintains independence in the
second matroid as well as the first, thus completing the augmentation.

As an example, consider a two dimensional assignment problem (involving, say,
only people and jobs.) The Wij's for this problem are given in Figure 1. 1(2) is
clearly 11,22, i.e., person 1 assigned to job 1, and person 2 assigned to job 2.

G(is shown in Figure 2. The arc lengths are shown as are the lengths of the
longest paths to each node from node a. The longest a to z path is a,11,12,22,23,z
which corresponds to deleting 11 and 22 from the intersection and adding 31,12,
and 23. The length of this path, 7, is the difference between the weight of 1

(3)

and I(2) . A complete description of this process and a proof of its validity is
given in (5].

Generalized Augumenting Paths

In the graph shown in Figure 2, one can obtain an optimal augmentation (i.e., one
which takes us from an optimal assignment of K elements to an optimal assignment
of K + 1) because:

1. If the current intersection is not maximal then an augmenting path exists.

2. The labels given to the nodes during the longest path algorithm completely
summarize the augmenting paths.

We now wish to generalize the notion of an augmentiL-," path, and hence the entire
procedure, to the problem of the intersection of three matroids. One way of doing
this is to "freeze" one of the matroids nd only consider alternating sequences
within the other two. In this case the first node, s, in an augmenting path would
be independent of I(K) in two of the three matroids (or in all three, in which case
it is the only node in the augmenting path). Say s, is independent of I(K) in the

first and third matroids. We could then freeze the third matroid and maintain the
same span within the third matroid throughout the augmenting path. Thus, the
deletion of s i for i even reduces this span and the addition of s i for i odd restores
it. We thus reduce the search space to two matroids and the same polynomial
bounded procedure will work. Note that, alternatively, we could have considered
the first matroid frozen. Indeed, it is so frozen in the two matroid intersection

algorithm. Thus, there are three types of augmenting paths, one for each matroid

within which s, is dependent. Unfortunately, while this procedure is polynomial

bounded, it does not guarantee optimal solutions as there are augmentations which

have no such corresponding argumenting path.

In order to guarantee that all augmentations are explored, we must relax the
definition of an augmenting path still further to include cases where independence

is not necessarijy restored by the deletion of s i for i even. Thus, an augmenting
path may start with any element, st, which is independent of I(K) in at least one

of the matroids. Unlike the procedure given for two matroids, one may begin with
independence in any matroid. Consider the graph shown in Figure 3 corresponding
to two augmenting paths, Path 1 and Path 2, for the partial assignment 111,222,333

(i.e., person 1 to job I on day 1, etc.) in a TDAP. These paths are not strictly

comparable in that they exclude different elements along the way. Thus in Figure
2, when node 22 is labeled using the path a,32,22 it is equivalent (in terms of how

the path can continue, not necessarily in terms of the numerical value of the label)
to being labeled using the path a,31,11,12,22. In Figure 3, however, when node

111 is labeled using the path a,411,111 it is different from labeling 111 using the
path a,154,111 because different continuations of these paths are possible. Thus
starting with a,411,111 we can continue to 152 but not 215 and, conversely, start-

ing with a,154,111 we can continue with 215 but not 152. Thus, Path 1 and Path

2 are not comparable in terms of their lengths only.

Such paths must also be compared in terms of their spans. We note that if two

paths from a to some node i result in sets having identical spans then the same
continuations of both paths are possible. (This was the case for intersections of
two matroids.) Indeed, it is possible for paths to have slightly different spans

and still have the same set of possible continuations. In particular, if the only
difference in the intersections of the spans of two paths are nodes outside the

intersection of the spans of I(l), then the paths are comparable. We can thus

generalize the augmenting path procedure to consider all undominated a to z paths
where one path dominates another only if it has the same continuations and a

larger length.

The notion of a path itself, however, must bre generalized as well. In the case of
3 matroids, not all augmentations correspond to paths. We see an example of this
for a TDAP. The augmentation [412,234,341,123) - [111,222,333) does not cor-
respond to any path in the conventional sense. It is possible however, to extend
the augmenting path procedure to include such augmentations by extending the

notion of a path.

We define a generalized augmenting path with respect to an intersection IM to be
a sequence of nodes S = (s1,s2, .. s m) where si e E - I(K) for odd i and s, &

I(K) for even i. As before, 1(K) +'s, - S2 + s3 - ... s m is an intersection. Also,
the even si are deleted in order to remove dependencies created by the inclusion

of the odd si. Now, however, the subsequences I(K) s. - S2 ... -s. for even j
need not correspond to intersections.

One can thus guarantee an optimal intersection as in the case of two matroids. The
number of generalized augmenting paths one may need to consider, however, may
grow exponentially with K. In practice, however, the number of such paths can'
be controlled at the expense of optimality. First, the length of any path, (si, S2,

s), can be reduced by a penalty to account for the nodes which still must be
deleted to restore the intersection. In the case of arbitrary matroids, this may be
complex to compute. In the case of the TDAP, however, where 3 partition
matroids are involved, and all cycles contain 2 elements, it is easily computed.

In some cases the above may keep the computations reasonable. In others, it may
be necessary to reduce the number of paths considered by relaxing the definition
of dominance. This will also result in a heuristic rather than an optimal solution.
In the case of the TDAP, one such relaxation is to ignore differences in the spans
outside the intersection of the span of I(K) . This is motivated by the fact that
we consider deleting elements in I(K) in order to include elements blocked by

them.

We can thus consider a hierarchy of generalized augmenting path procedures with
increasingly stringent dominance criteria and increasing runtime. A tradeoff
between optimality and runtime is then available. We are currently investigating

this tradeoff using the TDAP as an example.

References

1. Cook. S.A., "The Complexity of Theorem-Proving Procedures," Proc. of
Third Ann. ACM Symposium on Theory of Computing, 1971, p 151-158.

2. Garey, M.R. and D.S. Johnson, Computers & Intractability, W.H. Freeman,
1979.

3. Sahni, S. and E. Horowitz, "Combinatorial Problems: Reducibility and Ap-
proximation," Operations Research 26(4), 1978.

4. Karp, R.M., "The Probabalistic Analysis of Some Combinatorial Search Algor-
ithms," in Algorithms and Complexity, Academic Press 1976.

5. Lawler, E., Combinatorial Optimizatiorv. Networks and Matroids, Holt, Rine-
hart & Winston, 1976.

6. Edmonds, J., "Matroid Intersection," in Discrete Optimization I, North Holland
Publishers Co. p. 39-49.

_________________________ .

job 123
Person

1 10 9 5
25 10 9

3 9 '

FIGURE 1 -Cost Matrix

9 -10

Pah1 P9h

FIUR 3

APPENDIX E

.--

Centralized Teleprocessing Network Design

By

Aaron Kershenbaum

and

Robert R. Boorstyn
Polytechnic Institute of New York

Abstract

The problem considered is that of finding an optimal (minimum

cost) design for a centralized processing network given a set of

locations, traffic magnitudes between these locations, and a single

common source or destination. Several heuristics, which are efficient

(in terms of their execution time and memory requirements on a

digital computer) and which produce seemingly good results, have

already been developed and are currently accepted techniques. Some

work has also been done on finding optimal solutions to this problem

both as a design tool and as a means of verifying the effectiveness of

proposed heuristics. We focus in this latter area. Currently known

techniques for the optimal solution of this problem via integer pro-

gramming have fallen short of the desired objectives as they require

too much memory and running time to be able to treat problems of

realistic size and complexity. We develop an improved technique

which is capable of handing more realistic problems.

This work was supported in part by the U.S. Army CORADCOM,
Contract No. DAAK 80-80-K-0579 , and by the National Science Foun-
dation, Grant No. ENG-7908120

1. INTRODUCTION AND PROBLEM STATEMENT

The problem considered is that of finding an optimal (minimum

cost) design for a centralized telecommunication network given a set

of locations, traffic magnitudes between these locations, and a single

common source or destination. The vast majority of telecommunication

networks currently in existence are of this type. Thus, this problem

has been much studied (2,3,4,5,8,9,12,16,24,28,31,32).

Several heuristics, which are efficient (in terms of their execu-

tion time and memory requirements on a digital computer) and which

produce seemingly good results, have already been developed and are

currently accepted techniques. Some work has also been done on

finding optimal solutions to this problem as a means of verifying the

effectiveness of proposed heuristics. Currently know techniques for

the optimal solution to this problem via integer programming have

fallen short of the desired objective as they require too much memory

and running time to be able to treat problems of realistic size land

complexity. We develop an improved technique which is capable of

handling problems of realistic size.

More formally, the problem considered here is that of finding a

minimum spanning tree subject to one or more constraints which in

general are equivalent to demanding that the sum of the traffic asso-

ciated with the nodes in any subtree must not exceed some predeter-

mined maximum.

A minimum spanning tree is a loop-free collection of arcs joining

a set of nodes such that the sum of the lengths of the arcs is mini-

mal. In the case of a communication network, these collections of

arcs are called multidrop lines.

-2-

It should be noted that this constraint form is quite general and

encompasses many real-world constraints which arise in the design of

centralized telecommunications networks. Thus, for example, in

addition to treating the obvious constraint imposed by line capacity,

it is possible to treat a restriction on the number of terminals on a

multidrop line by associating a uniform traffic with each terminal.

Also, the length (cost) functions which can be treated are quite

general. Any function which is not a function of the tree chosen is

permissable.

Formally, we seek to solve the following problem:

Given

1. A vertex (node) set V = {vili=0,1,...,n} representing the

terminal locations in the network. Node v0 is a distin-

guished node which we will refer to as the center.

2. A symmetric function giving the length (cost) dij of an arc

between any pair of locations.

3. A constraint, m, on the number of nodes which may share a

multidrop line. This constraint can be generalized to allow

a weight or traffic, ci , to be associated with each node and

to require that the sum of the weights associated with the

nodes on any multidrop line not exceed m.

We define the set of nodes in the jth multidrop line to be Vj and

the multidrop line itself to be a minimal spanning tree TVj on V i {V oi.

Thus, the constraint can be stated in terms of the cardinality of V.

as I I ' m V. In the more general form, the constraint would be

ci < m V.,. We wish to find a tree, TV of minimum total
vi V

length satisfying the constraint in 3 above. That is, we wish to

-3-

N
minimize I d ip subject to 3, where v P is the immediate predecessor

of vi, i. e. , the node closest to vi on the path between vi and vo in

T, and T is any spanning tree. We consider exact (optimal) solutions

to this problem. The primary motivation for the work is to develop

an exact algorithm capable of permitting study of the performance of

heuristics on a broader class of problems than was previously studied,

to gain insight into the performance of both exact and heuristic

procedures and, in particular, to pinpoint where and why they fail.

-4-

II. OUTLINE OF A NEW OPTIMAL SOLUTION TECHNIQUE

There currenty exist several techniques which will yield optimal

solutions to the CMST problem. These techniques can be divided into

two classes - branch exchange methods (as proposed by Lin (22) and

Frank (9)) and branch and bound methods (10,22). We concentrate

on the latter class of techniques.

The specific application of branch and bound techniques to the

solution of the CMST problem was proposed by Chandy and Russell

(3) and was subsequently refined (2) so that it could treat somewhat

more meaningful problems. Subsequently, Elias and Ferguson (4)

proposed further refinements and thereby expanded the range of

applicability of the technique. Gavish (34) recently developed a

bound using Lagrangean relaxation.

The basic technique is, as has already been mentioned, a branch

and bound algorithm. The original problem considered has all branches

in the category. "permissible," i. e., any branch may or may not be

part of the final solution. Subproblems are generated by selecting a

permissible branch and making it 'prohibited" in one subproblem or

"required" in another.

The relaxation used is simply to generate a modified MST by

including all "required" branches, excluding all "prohibited" branches,

and forming the tree of minimum total length by connecting (as yet

unconnected) nodes using remaining ("permissible") branches.

Clearly, a solution obtained in this manner is a lower bound on

the value of a feasible solution to the subproblem as it is the tree of

minimum length. Note also that in the case where all arcs are speci-

fied (prohibited or required), the lower bound and solution are

-5-

identical and the subproblem fathoms. In general, the subproblem

fathoms when

1. No feasible solution exists to the subproblem. This occurs,

when the required branches form a loop, when the required

branches create a subtree violating the constraints, or

when the prohibited branches disconnect the network.

Other criteria exist but are difficult to test for.

2. The lower bound equals or exceeds the value of the best

solution found thus far.

3. The lower bound solution is feasible.

When all subproblems have fathomed, the current best solution is

the global optimum.

A number of observations have been made, which can be used to

accelerate a basic branch and bound technique. One of these, which

is used in the sequel, is given in Theorem 1 below:

Theorem 1: (3)

If branches (v 0 ,vjl), (v 0 ,vj2)...., (v0 vjK), are part of

some MST, T, on V then there exists a CMST including

these edges.

Corollary:

If arcs (v 0 ,vj), (v 0 ,v) .. Iv) are present in the

modified MST produced in any subproblem, then (if any

CMST's exist in the subproblem) there exists a CMST on

the subproblem containing these arcs.

The preceding theorem and corollary allow one to avoid consider-

ing subproblems with such arcs prohibited. The techniques devel-

oped in the sequel make explicit use of both observations as well as

others made in the references cited.

-6-

The inherent problem with the existing procedures lies in the

relaxation method used. At each step, the problem is relaxed to a

modified MST. Unfortunately, this bound is often too loose to elimi-

nate a sufficiently large percentage of the subproblems to make the

procedure practical. This is particularly evident when the constraints

are tight; it is for such problems that the relaxation is loosest.

Unfortunately, it is also for that class of subproblems that the known

heuristics display the widest variation in the quality of solutions.

Note that any optimal solution to the CMST problem has the

property that all subtrees are MST's on the set of nodes contained in

the subtree and the center. Thus, it suffices to find the optimal

partition of the nodes into subtrees. The technique which is devel-

oped in the following sections will thus generate partitions of the

nodes.

The technique works within the framework of branch. and bound

algorithms, as did the techniques referred to above. We develop two

algorithms, one based on generating subproblems by restricting

nodes, and the other based on generating subproblems by restricting

arcs. These techniques differ from previous ones in that the relaxa-

tion used here is tighter and thus, a smaller number of subproblems

need be examined.

We begin by restricting the problem slightly. We seek a CMST

subject to the constraint that the number of nodes (rather than the

sum of the weights of the nodes) in any subtree not exceed a pre-

specified maximum. Since)ur primary intent here is to study the

performance of CMST algorithms, this modification would not, in

general, have a significant effect. Indeed, if one preferred, a node

of weight K could be replaced by K nodes of weight 1, providing one

is willing to allow the original node of weight K to be split among

more than one subtree.

To find a partition of the nodes V = tviIi = 1,2,...n} into

subtrees, we begin by making n copies of each node corresponding to

the possibilities of the node being in any of n possible subtrees.

Thus, vii corresponds to node vi being in subtree j.

The problem of obtaining an optimal partition of nodes into

subtrees can be thought of as one of selecting an optimal subset from

the set E = [vijI i=1,2 n; j=1,2, .. n}. Feasible subsets of E,

i.e., those corresponding to partitions satisfying the capacity con-

straint, will contain 1 v.. for each i and at most m v 's for each j.

If we associate a weight, wij, with each vij, the optimal subset of E

(hence the optimal partition of V) is defined as the feasible subset of

minimum total weight.

An efficient algorithm (see 14, 21, 35) exists for the solution of

the problem of finding the optimal subset of E given the values of

wij. The algorithm, which can be thought of as a matroid interesec-

tion [1,17,19,20,29] algorithm or alternatively as a series of shortest

path prcblems in appropriately defined graphs, has a worst case

running tme of order n3 and in practice has a running time closer to

order n 2 (see 35). Unfortunately, the set of weights, w i, which

correspond directly to the "cost" (contributicn to the overall length

of the CMST) of vi in subtree j can be specified only when the pro-

blem solution is already known. We can, however, define a set of

weights, w,,, which have the property that the optimal partition found

using these weights will have a value (sum of weights) which is a

lower bound on the length of the optimal CMST. Thus, we can relax

the CMST problem to the problem of finding an optimal partition.

This, together with generating subproblems by successively restrict-

ing either nodes or arcs, gives rise to an optimum CMST algorithm

within the branch and bound context.

An appropriate set of weights, wij, can be defined as follows.

Suppose we are given, for each subtree j, the set V. of nodes per-

mitted in the subtree; a procedure for obtaining the V. will be given

below. One can then find T the minimum spanning tree on the

nodes in V. IVo}. Let d be the length of the arc connecting v

to its predecessor in T. (i.e., d.. is the length of the last arc in the
i i i

path from v0 to v i in T.). The following theorem, which is proven in

(35), allows us to obtain appropriate wij:

Theorem 2: The weight of the optimal partition using wij = aij is a

lower bound on the length of the CMST for the same V and M

Furthermore, it is proven in (35) that other similarly defined

w..'s also preserve this lower bound. In particular, suppose T.

contains a path (v o ... v v.. Vqx... v ...) as shown in Figure

1. Let S be the set of nodes [v vv and let wk be the

largest weight of any node in S. Suppose w > Wkj. Define A

wpj - Wkj Then the following theorem holds:

Theorem 3: If a set of weights w.. = d.. is modified by transferring

weight A from wpi to wsj where 4, vp and v s are defined as above,

the weight of the optimal partition is still a lower bound on the length

of the CMST for the same V and m.

Theorem 3 allows us to transfer weight from a node to its suc-

cessors in T. in order to guarantee that the lower bound obtained

-9-

from the partitioning problem is at least as tight as the bound ob-

tained using an MST, as is done in (2), (3), and (4). A proof that

this can always be done is given in (35). As an example of how this

works, consider the network shown in Figure 2a. The MST for this

network and the node weights corresponding to it are shown in Figure

2b. These weights correspond to the bound obtained using an MST.

Suppose, however, that we restrict v 3 from being part of a given

subtree j. The weights shown in Figure 2c would then be obtained if

we simply set wij = dij. Note in particular that w2j has been reduced

from 5 to 1. This reduction in w2j could result in a loosening of the

lower bound. Theorem 3 allows us to transfer up to a = wlj - w2 j,

i.e., 7 units of weight, from wlj to w2j and obtain the weights shown

in Figure 2d. Note that the wij in Figure 2d are at least as great as

the wij in Figure 2b. Thus, the lower bound obtained using the w 1

in Figure 2d will be at least at tight as that obtained using an MST.

In fact, the bound so obtained is significantly tighter, as is shown

by the computational experience given in Section V.

We now turn to the question of the branching rule within the

branch and bound procedure. Little was said by Chandy and Russell,

Chandy and Lo, and Elias and Ferguson on the order in which sub-

problems are considered in the branch and bound procedure. Classi-

cially, two approaches are available. The first is to always consider

the subproblem with the least lower bound. Alternatively, one can

use depth first search, where one always solves most recently gener-

ated subproblems before returning to older subproblems. There are

advantages and disadvantages to both approaches.

-10-

The first approach allows one to proceed without any good

feasible solutions to guide the process. The assumption is that

subproblems with the lowest lower bounds will give rise to the best

feasible solutions. Hence, one prefers to explore these subproblems

first in the hope that they will give rise to low cost feasible solutions

which will eliminate other subproblems (with higher lower bounds)

from consideration . Also, by examining subproblems in this order,

one is continually narrowing the range between the upper and lower

bounds, and hence, has the option of terminating the algorithm when

the interval shrinks to some prespecified width.

There are, however, two major drawbacks to this approach.

First, one must keep (a potentially large number of) subproblems

around in order to select the next one. Thus, the storage required

for the procedure is potentially exponential. In practice, it was

storage, niot ruinning time, which was the active constraint on problem

size in previously developed techniques. One could temporarily store

sub problems in secondary storage, but this would complicate and siow

down the procedure.

Second, by considering problems in ascending order of lower

bound, one will, in general, be sequentially considering dissimilar

subproblems. Thus, one cannot easily take advantage of information

obtained in the solution of one problem for the solution of another.

For example, in the Elias and Ferguson technique, the similarity

between modified MST's for related subproblems cannot be easily

exploited if this first procedural outline is adopted.

Using depth first search overcomes both of these objections.

Indeed, a great deal of simplification is obtainable both in the genera-

tion of subproblems and in obtaining solutions owing to the similarity

of successively considered subproblems.

The maximum number of subproblems which need be kept around

at any time is bounded by the number of nested specifications it is

possible to make. Thus, if one is restricting nodes, the bound is n;

if one is including or excluding arcs, the bound is (n). This essen-

tially eliminates storage as an active constraint on the size of the

* problem which can be considered.

A further reason for using depth first search is that the major

reasons one would ordinarily choose the first procedure are not

present here. Any of the existing heuristics can be used to quickly

J generate a good upper bound. Furthermore, the procedures devel-

oped in the sequel lend themselves to generating feasible solutions for

all subproblems. Thus, a good upper bound is always available.

Hence, depth first search is used in developing the techniques

in the sequel. It should be further noted that the philosophy used

in developing these techniques was to create the simplest, most flex-

ible framework within which to work so that a variety of acceleration

techniques could be developed and tested. The concentraton is on

restricting the number of subproblems examined (which is exponential

in n) rather than the amount of work spent on each subproblem

(which is a low order polynomial in n).

-12-

III. NODE PARTITIONING

The first exact technique built around the above relaxation is

one which generates subproblems by restricting the subtrees a node

is allowed into. The procedure is described below. We begin by

describing the initialization procedure.

Step 0: (Initialize)

0.1) Find an upper bound, z , using a heuristic to generate

a good, feasible solution.

0.2) Find an MST, T, and identify arcs (vovI) (v0 ,v2
1 2

0.3) Reorder the nodes so that v1 , Vi. v are now v1,
v2 ~ ~ k.. k

0.4) For 1 < n, set Rij (RUE i

FALSE i

[Rii is a logical variable which is set to TRUE if v i has

been removed from consideration in this subproblem.

Observations made above allow us to remove some v..

immendiately].

0.5) For k < i < n, set R. TRUE i>

FALSE i < j

0.6) For i < j < n, find an MST, Tj, on Vj Jvo , where

V. = {viRij = FALSE) i.e., V. is the set of nodes

permitted in subtree j.

0.7) Set wij = di.,, where dii is the distance from v i to its

predecessor in T.

0.8) For j 1,2,..., k, exchange weight between wij for

-13-

different values of i so that the resulting modified

weights, w.. ,satisfy:

W.t. > w1] wi0O

where w = d. in the unconstrained MST, T, gener-

ated in Step 0.2 above.

0.9) For j = kil,..., n, exchange weight between w.. so

that the .resulting w.'. satisfy1]

W-1. > W..- 1
1] - ij

The justification for all of these steps was given in Section 2.

Steps 0.8 and 0.9 guarantee that the individual w.'. will all be atIi
least as great as the weights assigned using unconstrained MST.

Hence, this is a realization of the statement that the lower bound

obtained using this procedure must be at least as great as the lower

bound obtained using an MST. This also holds true for subproblems.

Thus, we have initialized a subproblem with nodes 1,2.....k forced

into subtrees 1,2,..., k, respectively, since, for i < k, Rij = TRUE

for i , j. In the course of the depth first search, we keep track of

the following variables:

d = The depth of the search, i. e., the number of nodes

which have been forced. d is initialized to k.

dMIN = The minimum allowable depth. dMIN is initialized to k

since at least k nodes should will be forced.

IWd = The subtree which the dth node is forced into.

The depth first search proceeds by forcing node k+1 into sub-

tree 1; i.e., d is set to k+1 and IWk+ 1 is set to 1. It continues

either by increasing d (to force another node) changing IWd (to force

-14-

a node into a different subtree) or decreasing d (to release a node

after forcing it successively through all subtrees). The depth first

search procedure follows.

Depth First Search Procedure

Step 0: Initialize problem (Steps 0.1 through 0.9 above).

Set d = k+1

Set d iN = k+1 Set IWd 1

Step 1: Solve the currently defined subproblem; i.e., find a

lower bound zL, and a feasible solution zF.

Step 2: if the current subproblem fathoms; i.e., zL > 2 F, go

to Step 3; otherwise go to Step 5.

Step 3: Set IWd = IWd + 1

If IWd > NMAXd go to Step 4; otherwise set up a new

subproblem and go to Step 1. NMAXd is the highest

indexed subtree which the node at depth d may be

forced into. In section 3 we observed that one should

not skip over subtrees. Thus:

NMAXd = max (K, max (IWi]) K < i < d

Step 4: Set d = d+1

If d < dMIN stop; otherwise set up a new subproblem

and go to Step 1.

Step 5: Set d = d+1

Set IWd = 1

Set up new subproblem and go to Step 1.

To set up a new subproblem, one need only modify the values of

a few R to impose (or remove) the restriction implied by the alter-

nation of d and IWd. Thus, after d is set to d+l and IWd is set to 1:

-15-

FALSE)= I
Rdj =(TRUE j > 1

After IWd is set to IWd + 1:

RdIWd = FALSE

Rd, iw d -1 = TRUE

After d is set to d - 1:

FALSE j < NMAX d
Rld+lj = TRUE j > NMAX d

The search space can be further pared using the corollary to

Theorem 1. If, in any subproblem, one finds that two nodes, v1 and

vj, both forced into the same subtree appear in separate subtrees in

the MST formed. on the: set. of permissable nodes in that subtree, then

the subproblem may be discarded.

As was mentioned, this optimal technique based on generating a

partition lends itself simply to obtaining a feasible solution to each

subproblem. The partition generated at each step is feasible. One

need only generate MST's on each group of nodes to obtain a feasible

solution. A simple acceleration technique, which proved to be quite

effective in practice, was to reorder the nodes v v n by

distance from v0 , nearest first. This tended to increase the lower

bound most rapidly. Such nodes, when restricted to a single sub-

tree, were absent from all others, and the "deprived" subtrees were

often forced to connect to v0 over longer arcs.

The R are used in the optimal partitioning procedure in a

straight forward fashion; any element vii, with its corresponding Rq

= TRUE, is considered to be removed from the problem.

-16-

The weight exchange procedure described as part of the initiali-

zation, which guarantees that the weight on each node will be at least

as great as its contribution to the length of an MST, is used here as

well. At each level, K, in the decision tree, we save the values of
Kthe w!. in a variable referred to as w ~. We then demand that w..

1] 1J

WK > v1i.e., we exchange weights to enforce the restriction. The

justification for doing so is identical to that used in the initialization

procedure. Note that this exchange guarantees not only that the

lower bound will remain tighter than an MST, but also that the lower

bound will be monotone with the depth in the decision tree. Neither

of these things is true without the exchange.

-17-

IV. ARC RESTRICTIONS

Anoti, - method of applying this relaxation technique to the

solution to the CMST problem is to restrict arcs; i.e., to force arcs

to be either "prohibited" or "required" as was done by Chandy and

Russell and Elias Ferguson. Thus, the initialization and subproblem

solution are essentially the same as they were in the technique des-

cribed in the previous chapter, but the method of generating subpro-

blems is different. The solution order is still a depth first search.

Some differences exist in the initialization procedure. Instead of

forcing a node into a subtree, we simply "require" the arcs (ilo),

I (iK,0) which are part of the unconstrained MST. This is, of

course, equivalent to what was done in the previous case. It is

implemented in a slightly different way, however.

The entire procedure, both during initialization and during

subsequent subproblem generation, restricts itself to dealing with

established arcs, i.e., arcs which connect a node directly to v0 or to

other nodes connected to v0 by established arcs. Thus, each

"required" arc forces a node into a given subtree and each

"prohibited" arc forces a node out of a given subtree. As a new

subtree is encountered (i.e..... when an arc of the form (v0 , vi) is

made "required"), we simply assign the next available subtree number

to the subtree.

Subproblems are generated by successively restricting (requiring

or prohibiting) established arcs. We again use d to represent the

depth of the search. Here, however, d refers to the number of

forced arcs rather than the number of forced nodes. Note that while

-18-

the number of required arcs is limited to n, the number of prohibited

arcs is not. We thus have a different type of decisicn tree than we

did in the previous section.

When forcing nodes into subtrees, we dealt with a tree of depth

n but with nodes of degree sometimes as great as n. Here, we deal

with a binary tree of depth as great as (n). It is not clear, how-

ever, especially with the paring techniques being used, which deci-

sion tree is actually larger.

The arc chosen for inclusion is,in each case the next arc to be

brought in by Prim's MST Algorithm (25); i.e., the shortest arc

connecting a node to some node connected to v0 by required arcs.

This has several advantages:

1. The arc chosen, if excluded, will tend to raise the lower

bound. This is important as it helps control the size of the

decision tree. Since a potentially large number of succes-

sive arc exclusions is possible, it is important that an arc

exclusion result in an increase of the lower bound as often

as possible so that the fathoming process will limit the

depth of the scarch.

2. If the arc is of the form (v 0 , vi), it need only be consid-

ered as "required" and not "prohibited." This is a direct

consequence of Theorem 1.

3. If the arc (vi, v.) is prohibited, and hence, vi is excluded

from the subtree containing vj, then so are all arcs of the

form (vi, VK), where vK is forced into the same subtree as

v. This is a direct consequence of an Elias and Ferguson

result.

-19-

We omit the details of the remainder of the implementation of the

arc restricting procedure as they are similar to the node restricting

procedure described above.

-20-

V. COMPUTATIONAL EXPERIENCE

The procedures described in the previous two sections were

coded in FORTRAN and run a PDP-!0. In this secton, we discuss

the results of experiments run to test the behavior of their run time

and effectiveness as a function of problem size and constraint tight-

ness.

Problems were generated by reading :n n and m and generating

random X and Y coordinates for the nodes within a unit square. The

location of the center was, in various problems, either random,

centered, or in the corner. Euclidean distances were used. Most

experiments were run with the center at the geographic center of the

unit square; in this way, larger problems could be examined.

Several series of problems were run with identical values of n

and m (and, of course, different randomly generated points) to see

how stable the running time is from one problem to another. The

standard deviation was found to be close to the mean for the problems

run. This essentially sa" -hat we should not pay close attention to

exact run times or the exact number of subproblems examined.

Series of problems were run varying n and m and using both the

node restricting and arc restricting procedures. Both procedures

were run with the identical problems and, furthermore, the same set

of nodes was used (with new nodes added as the problem size grew)

for all problems in this series. This results of this experiment are

shown in Table 1. As can be seen, the running times for both

procedures were comparable and run time grows exponentially with

problem size. (It was gratifying to find that the optimal solution

values found by both procedures always matched!)

-21-

It has already been mentioned that these procedures yield lower

bounds which are at least as great as those obtainable using uncon-

strained MST's. This was verified empirically by actually generating

lower bounds with .IST's as the algorithm proceeded. The program

was to print any exceptions, i.e., any times where the MST gener-

ated a higher lower bound; none occurred. Figure 3 shows some

typical lower bound values obtained using partitioning and MST's. As

can be seen, not only are the partitioning lower bounds greater, but

they grow more quickly with depth. This is significant, as a linear

increase in lower bound value will reduce the run time exponentially.

To measure the impact of the difference in lower bounds between

the MST and partitioning methods, several problems were run first

with the partitioning method and then with the MST method of lower

bounding. The results of this experiment are shown in Table 2. As

can be seen, the partitioning algorithm examines a much smaller

number of subproblems, and apparently, its effectiveness increases as

the problems grow larger. Thus, although it is somewhat more diffi-

cult to evaluate the lower bound using the partitioning algorithm than

it is using an MST, it is ie-:s than n times as hard to do so. The

reduction in the number cf subproblems which must be examined

.ppears to be sufficiently great to warrant the use of the partitioning

technique. Indeed, as the problem size grows, its attractiveness

seems to increase.

,AD A131 674 'RESEARCH IN NET MANAGEMENT TECHNIQUES FOR B ACT ICAL DATA

NETWORKS(U) POLYECHNIC INS OF NEW YORK BROOKLYN

'R BORSY NET AL SEP 82 CECOM80059-3
7 URG ASSIFED DAA8-80 K 0579 FIG 17/2 N

*1.

1.0 :: 32832

MI _ _ __RSLUIN _ET HR

-low alL

-22-

VI.- SUMMARY AND CONCLUSIONS

The purpose of this study was to develop improved exact tech-

niques for the solution of the CMST problem (a model of the multidrop

line problem) so that known heuristics for the solution to that prob-

lem could be examined on a broader class of problems and so that new

heuristics could be developed on the basis of what was learned.h

Much of this happened. An improved exact technique, based upon

generating lower bounds using partitioning instead of MSTs, was

developed and computational experiments were run using it. The

bounds yielded by these techniques were tighter than those yields by
the MST based techniques, and hence, the number of subproblems

which had to be examined in order to obtain a solution was smaller.

Indeed, the decrease in the number of subproblems examined more

than compensated for the increased effort required for the examina-

tion of each subproblem. Thus, the new techniiques served their

purpose in that they permitted the examination of problems not care-

fully examined before. In particular, it was possible to examine

problems with very tight constraints, although it was not possible to

examine problems of substantially greater size than had been pre-

viously examined.

Even with the improved technique, the growth of run time with

respect to problem size was found to be exponential, albeit of a lower

order than previously know exact techniques and of a much lower

order than the solution space. Thus, one cannot use the technique

for large problems. A number of acceleration techniques were devel-

oped and incorporated into the procedure.

-23-

Thus, it was possible to examine sufficiently interesting problems

using the exact technique to make several insights into the problem.

The first is that the performance of the known heuristic degrades as

the constraint tightness increases and improves as the problem size

increases. An imporved heuristic [33] was also developed on the

basis of this study.

it

-24-

REFERENCES

1. Bruno, I., Weinberg, L., "Generalized Networks: Networks
Embedded on a Matroid, Part I," NETWORKS, Vol. 6, No. 1,
January 1976, pp. 53-94.

2. Chandy, K.M., Lo, T., "The Capacitated Minimum Spanning
Tree," NETWORKS, Vol. 3, No. 2, 1973, pp. 173-182.

3. Chandy, K.M., Russell, R.A., "The Design of Multipoint Link-
ages in a Teleprocessing Tree Network," IEEE TRANS. ON
COMPUTERS, Vol. C-21, 1972, pp. 1062-1066.

4. Elias, D., Ferguson, M.J., "Topological Design of Multipoint
Teleprocessing Networks," IEEE TRANS. ON COMM., Vol. C-22,
1974, pp. 1753-1761.

5. Esau, L.R., Williams, K.C., "On Teleprocessing System Design,
Part II," IBM SYST. J., Vol. 5, No. 3, 1966, pp. 142-147.

6. Fisher, M.j., "Efficiency of Equivalence Algorithms," COM-
PLEXITY OF COMPUTER COMPUTATIONS, Plenum Press, 1972.

7. Ford, L.R., Fulkerson, D.R., FLOWS IN NETWORKS, Princeton
Upniversity Press, Princeton, New Jersey, 1962.

8. Frank, H., Chou, W., "Topological Optimization of Computer
Networks," PROC. IEEE, Vol. 60, Nov., 1972, pp. 1385-1397.

9. Frank, H., Frisch, I.T., Chou, W., Van Slyke, R., "Optimal
Design of Centralized Computer Networks," NETWORKS, Vol. 1,
No. 1, 1972, pp. 43-57.

10. Geoffrion, A., PERSPECTIVES ON OPTIMIZATION, Addison-
Wesley, Reading, Mass., 1972, pp. 137-162.

11. Johnson, E., "On Shortest Paths and Sorting," PROC> ACM
ANNUAL CONF., August, 1972, pp. 510-517.

12. Karnaugh, M., "Multipoint Network Layout Program" Interna-
tional Business Machine Corp., REPORT #RC3723, 1972.

13. Kershenbaum, A., "Computing Capacitated Minimal Spanning
Trees Efficently," NETWORKS, Vol. 4, No. 4, October 1974, pp.
299-310.

14. Kershenbaum, A., Boorstyn, R., "Centralized Teleprocessing
Network Design," PROC. NATIONAL TELEC. CONF., December
1976.

15. Kershenbaum, A., Chou, W., "A Unified Algorithm for Designing
Multidrop Teleprocessing Networks," IEEE TRANS. ON COMM.,
Vol. C-22, 1974, pp. 1762-1772.

-25-

16. Kershenbaum, A., Van Slyke, R., "Computing Minimum Spanning
Trees Efficiently," PROC. ACM ANNUAL CONF., August 1972,
pp. 518-527.

17. Krogdehl, S., "A Combinatorial Base for Some Optimal Matroid
Intersection Algorithms," TECH. REPORT SAN-CS-74-468, Nov.
1974, Computer Science Department, Standford University.

18. Kruskal, J.B., "On the Shortest Spanning Subtree of a Graph
and the Traveling Salesman Problem" PROC. AMER. MATH.
COS., Vol. 7, 1956.

19. Lawler, E., "Matroid Intersection Algorithms," MATHEMATICAL
PROGRAMMING, Vol. 9, No. 1, 1975.

20. Lawler, E., "Matroids with Parity Conditions: A new Class of
Combinatorial Optimization Problems," MEMORANDUM No. ERL-
M334, Electronics Research Laboratory, College of Engineering,
University of California, Berkeley, Nov. 1971.

21. Lawler, E., COMBINATORIAL OPTIMIZATION: NETWORKS AND
MATROIDS, Holt. Reinhart and Winston, 1976.

22. Lin, S., "An Effective Heuristic Algorithm for the Traveling
Salesman Problem" OPERATIONS RESEARCH, 1972, pp. 498-516.

23. Little, J.D.C., Murty, K.C., Sweeney, D.W., Karcl, C., "An
Algorithm for the Traveling Salesman Problem" OPERATIONS
RESEARCH, Vol. 11, November 1976, pp. 972-989.

24. Martin, I., SYSTEM ANALYSIS FOR DATA TRANSMISSION,
Englewood Cliffs, New Jersey, Prentice-Hall, 1972.

25. Prim, R.C., "Shortest Connection Networks and Some Generali-
zations," BELL SYST. TECH. I., Vol. 36, 1957, pp. 1389-1401.

26. Reinfeld, N.V., Vogel, W.R., MATHEMATICAL PROGRAMMING,
Printice-Hall, Englewood Cliffs, New Jersey, 1958.

27. Rosenstiehl, P., "L'arbre Minimum d'un Graphe, "THEORY OF
GRAPHS, P. Rosenstiehl, Ed., New York: Gordon and Breach,
1967.

28. Sharma, R.L., El-Bardai, M.T., "Suboptimal Communications
Network Synthesis," PROC. INTERNATIONAL CONF. ON COMM.
June 1970, pp. 19.11-19.16.

29. Tutte, W.T., INTRODUCTION TO THE THEORY OF MATROIDS,
American Elseview, 1971.

30. Whitney, H., "On the Abstract Properties of Linear Dependence,"
AMER. 1. MATH., Vol. 56, 1935, pp. 509-533.

-26-

31. Whitney, V.K.M., "Comparison of Network Topology Optimization
Algorithms," PROC. 1972 ICCC, 1972, pp. 332-337.

32. Papadimitriou, C.H., "The Complexity of the Capacitated Tree
Problem," NETWORKS, Vol. 8, No. 3, 1978, pp. 217-230.

33. Kershenbaum, A., Boorstyn, R., and Oppenheim, R. "Second
Order Greedy Algorithms for Centralized Teleprocessing Network
Design" IEEE TRANS. ON COMM., October 1980, p. 1835-1838.

34. Gavish, B., "New Algorithms for the Capacitated Minimal Directed
Tree Problem", Proceedings of ICCC 80, Port Cester, NY,
October 1980, p. 996-1000.

35. Kershenbaum, A., "Centralized Teleprocessing Network Design",
Ph.D. Thesis, Polytechnic Inst. of NY, 1976.

I

.

-27-

Table 1: Number of Subproblems Examined

rn m Node Restricting Arc Restricting

8 2 16 34
8 3 13 24

10 2 120 199
10 3 57 68
10 4 67 73
12 2 298 696
12 3 375 362
12 4 171 138
14 2 766 723
14 4 526 379
16 3 not run 1085
16 4 818 737
18 3 not run 6832

. r

-28-

TABLE 2: COMPARISON OF NUMBER OF SUBPROBLEMS EXAMINED
USING MST AND PARTITIONING AS LOWER BOUNDS

NUMBER OF NUMBER OF
SUBPROBLEMS SUBPROBLEMS

n m (MST) (PARTITIONING)

8 3 87 24

12 3 2,767 362

20 7 4,205 146

-29-

WK max (W)

Figure 1

-30-

V 0 4

8 10 4

vV 2 2a

10
1 // 5

0

4

w..= V' ~ - 4 2b

1 7 5

8 80

W..7W..8 v 1 W..j4 v 1

v 2 ; W2 j 1j =5

2c 2d

Figure 2

-31-

3300 F

3200-
----------------------------- OPTIMAL SOLUTION

3100 7LOWER BOUND USING

INTERSECTION

3000-

2900 - /
2800 -/

2-700 -//

/ LOWER BOUND
2600 - i7 USING MST

2500 -

2400 -

2300 -

2200 -

0 1 2 3- 4 5 6 DEPTH

FIGURE 3: COMPARISON OF LOWER BOUND VALUES USING MST AND
INTERSECTION

MN

SECURITY CLASSIFICATION OF THIS PAGE (mien Dots Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

CECOM-80-0579-3 I -"F___ _ 'l_
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

Research in Net Management Techniques for 3rd Semiannual
Tactical Data Networks

6. PERFORMING O1G. REPORT NUMBER

7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(s)

Dr. Robert Boorstyn
Dr. Aaron Kershenbaum DAAK 80-80-K-0579

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

AREA & WORK UNIT NUMBEAS

Polytechnic Institute of New York
333 Jay Street L4.61102.AH48.DF01
Brooklyn, New York 11201

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

CDR, CECOM September 1982

DRSEL-COM-RF-2 13. NUMBER OF PAGES

Ft. Monmouth, New Jersey 07703 83
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of th

UNCLASSIFIED

!5.. DECLASSIFICATON,'COWNGPADING
SCHEDULE

1. DISTRIBUTION STATEMENT fo this Report)

Approved for Public Release;
Distribution Unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary end Identify by block number)/ Packet Radio, Packet Networks, Packet Switching, Network Management,
Communications Protocols

20. ABSTRACT (Continue on re-erie side It neceessar and identifv by block number)

is report is the third semi-annual report covering research in Packet Radio
communication networks design and analysis. Presented herein is an approach
for the throughput analysis of arbitrary multi-hop packet radio networks a
teleprocessing network design technique, and a mathematical technique for
combinational organization problems.

DD I JR36 1473 EDITION of I NOV 65 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Rntered)

DFSL-CCM:RF- (10 Copies.)

DRSZL-COM-D

